Disentangling Blood Volume and Blood Flow Changes in Hemodynamic Monitoring of Upper and Lower Limbs Reveals Sex Differences in Response to Hypovolemic Stimuli
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Set-Up
2.3. Experimental Protocol
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Exposure to 90 s LBNP
3.2. Exposure to −30 mmHg LBNP for 5 min
3.3. Comparison Between Forearm and Thigh
3.4. Repeatability of Hemodynamic Changes at −30mmHg, 90 s
4. Discussion
4.1. Summary of Results
4.2. Isolated vs. Progressive LBNP Applications
4.3. Analysis of Time Courses Reveals Blood Volume and Oxygenation Changes
4.4. Sex Differences
4.5. Limb Differences
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LBNP | Lower Body Negative Pressure |
NIRS | Near-Infrared Spectroscopy |
MAP | Mean Arterial Blood Pressure |
CNAP | Continuous Non-invasive Arterial Pressure |
CO | Cardiac Output |
HR | Heart Rate |
HHb | Changes in Deoxygenated Hemoglobin + Myoglobin |
O2Hb | Changes in Oxygenated Hemoglobin + Myoglobin |
BL | Beer–Lambert |
tHb | Total Hemoglobin |
THI | Tissue Hemoglobin Index |
TOI | Tissue Oxygenation Index |
ANOVA | Analysis of Variance |
CSI | Cumulative Stress Index |
SRS | Spatially Resolved Spectroscopy |
FVC | Forearm Vascular Conductance |
CVP | Central Venous Pressure |
Hbdiff | Difference between O2Hb and HHb |
ATT | Adipose Tissue Thickness |
References
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Convertino, V.A. Lower body negative pressure: Physiological effects, applications, and implementation. Physiol. Rev. 2019, 99, 807–851. [Google Scholar] [CrossRef]
- Convertino, V.A. Gender differences in autonomic functions associated with blood pressure regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R1909–R1920. [Google Scholar] [CrossRef]
- Fu, Q.; Arbab-Zadeh, A.; Perhonen, M.A.; Zhang, R.; Zuckerman, J.H.; Levine, B.D. Hemodynamics of orthostatic intolerance: Implications for gender differences. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H449–H457. [Google Scholar] [CrossRef]
- Montgomery, L.D.; Kirk, P.J.; Payne, P.A.; Gerber, R.L.; Newton, S.D.; Williams, B.A. Cardiovascular responses of men and women to lower body negative pressure. Aviat. Space Env. Med. 1977, 48, 138–145. [Google Scholar]
- Franke, W.D.; Johnson, C.P.; Steinkamp, J.A.; Wang, R.; Halliwill, J.R. Cardiovascular and autonomic responses to lower body negative pressure. Clin. Auton. Res. 2003, 13, 36–44. [Google Scholar] [CrossRef]
- Hachiya, T.; Hashimoto, I.; Saito, M.; Blaber, A.P. Peripheral vascular responses of men and women to LBNP. Aviat. Space Environ. Med. 2012, 83, 118–124. [Google Scholar] [CrossRef]
- Frey, M.A.; Hoffler, G.W. Association of sex and age with responses to lower-body negative pressure. J. Appl. Physiol. 1988, 65, 1752–1756. [Google Scholar] [CrossRef]
- Ferrari, M.; Muthalib, M.; Quaresima, V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: Recent developments. Phil. Trans. R. Soc. A 2011, 369, 4577–4590. [Google Scholar] [CrossRef]
- Messere, A.; Ceravolo, G.; Franco, W.; Maffiodo, D.; Ferraresi, C.; Roatta, S. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg. J. Appl. Physiol. 2017, 123, 1451–1460. [Google Scholar] [CrossRef]
- Rashid, A.; Roatta, S. Differential control of blood flow in masseter and biceps brachii muscles during stress. Arch. Oral Biol. 2022, 141, 105490. [Google Scholar] [CrossRef]
- Ye, S.; Stetter, S.; McCully, K.K. Muscle Metabolism During Multiple Muscle Stimulation Using an Affordable Equipment. JFMK 2024, 9, 248. [Google Scholar] [CrossRef]
- Canova, D.; Roatta, S.; Bosone, D.; Micieli, G. Inconsistent detection of changes in cerebral blood volume by near infrared spectroscopy in standard clinical tests. J. Appl. Physiol. 2011, 110, 1646–1655. [Google Scholar] [CrossRef]
- Messere, A.; Roatta, S. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy. Physiol. Rep. 2013, 1, e00179. [Google Scholar] [CrossRef]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 091313. [Google Scholar] [CrossRef]
- Seddone, S.; Ermini, L.; Policastro, P.; Mesin, L.; Roatta, S. Evidence that large vessels do affect near infrared spectroscopy. Sci. Rep. 2022, 12, 2155. [Google Scholar] [CrossRef]
- Messere, A.; Roatta, S. Local and remote thermoregulatory changes affect NIRS measurement in forearm muscles. Eur. J. Appl. Physiol. 2015, 115, 2281–2291. [Google Scholar] [CrossRef]
- Gonzalez, J.E.; Cooke, W.H. Acute fasting reduces tolerance to progressive central hypovolemia in humans. J. Appl. Physiol. 2024, 136, 362–371. [Google Scholar] [CrossRef]
- Hachiya, T.; Blaber, A.P.; Saito, M. Changes in superficial blood distribution in thigh muscle during LBNP assessed by NIRS. Aviat. Space Environ. Med. 2004, 75, 118–122. [Google Scholar]
- Murphy, E.K.; Bertsch, S.R.; Klein, S.B.; Rashedi, N.; Sun, Y.; Joyner, M.J.; Curry, T.B.; Johnson, C.P.; Regimbal, R.J.; Wiggins, C.C.; et al. Non-invasive biomarkers for detecting progression toward hypovolemic cardiovascular instability in a lower body negative pressure model. Sci. Rep. 2024, 14, 8719. [Google Scholar] [CrossRef]
- Soller, B.R.; Ryan, K.L.; Rickards, C.A.; Cooke, W.H.; Yang, Y.; Soyemi, O.O.; Crookes, B.A.; Heard, S.O.; Convertino, V.A. Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans. Crit. Care Med. 2008, 36, 176–182. [Google Scholar] [CrossRef]
- Yang, H.; Cooke, W.H.; Reed, K.S.; Carter, J.R. Sex differences in hemodynamic and sympathetic neural firing patterns during orthostatic challenge in humans. J. Appl. Physiol. 2012, 112, 1744–1751. [Google Scholar] [CrossRef]
- Hachiya, T.; Walsh, M.L.; Saito, M.; Blaber, A.P. Delayed vasoconstrictor response to venous pooling in the calf is associated with high orthostatic tolerance to LBNP. J. Appl. Physiol. 2010, 109, 996–1001. [Google Scholar] [CrossRef]
- Niemeijer, V.M.; Jansen, J.P.; van Dijk, T.; Spee, R.F.; Meijer, E.J.; Kemps, H.M.; Wijn, P.F. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: The extent of the problem. Physiol. Meas. 2017, 38, 539. [Google Scholar] [CrossRef]
- Vissing, S.F.; Scherrer, U.; Victor, R.G. Relation between sympathetic outflow and vascular resistance in the calf during perturbations in central venous pressure. Evidence for cardiopulmonary afferent regulation of calf vascular resistance in humans. Circ. Res. 1989, 65, 1710–1717. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.G.; Mahon, S.; Tromberg, B.J.; Ryan, K.L.; Convertino, V.A.; Rickards, C.A.; Osann, K.; Brenner, M. Tissue hemoglobin monitoring of progressive central hypovolemia in humans using broadband diffuse optical spectroscopy. J. Biomed. Opt. 2008, 13, 064027. [Google Scholar] [CrossRef]
- Wolthuis, R.A.; Bergman, S.A.; Nicogossian, A.E. Physiological effects of locally applied reduced pressure in man. Physiol. Rev. 1974, 54, 566–595. [Google Scholar] [CrossRef] [PubMed]
- van Heusden, K.; Gisolf, J.; Stok, W.J.; Dijkstra, S.; Karemaker, J.M. Mathematical modeling of gravitational effects on the circulation: Importance of the time course of venous pooling and blood volume changes in the lungs. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, 2152–2165. [Google Scholar] [CrossRef]
- Buckey, J.C.; Peshock, R.M.; Blomqvist, C.G. Deep venous contribution to hydrostatic blood volume change in the human leg. Am. J. Cardiol. 1988, 62, 449–453. [Google Scholar] [CrossRef]
- Lott, M.E.J.; Hogeman, C.; Herr, M.; Bhagat, M.; Sinoway, L.I. Sex differences in limb vasoconstriction responses to increases in transmural pressures. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H186–H194. [Google Scholar] [CrossRef]
- Rea, R.F.; Hamdan, M.; Clary, M.P.; Randels, M.J.; Dayton, P.J.; Strauss, R.G. Comparison of muscle sympathetic responses to hemorrhage and lower body negative pressure in humans. J. Appl. Physiol. 1991, 70, 1401–1405. [Google Scholar] [CrossRef]
- Furlan, R.; Jacob, G.; Palazzolo, L.; Rimoldi, A.; Diedrich, A.; Harris, P.A.; Porta, A.; Malliani, A.; Mosqueda-Garcia, R.; Robertson, D. Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms. Circulation 2001, 104, 2932–2937. [Google Scholar] [CrossRef]
- Messere, A.; Tschakovsky, M.; Seddone, S.; Lulli, G.; Franco, W.; Maffiodo, D.; Ferraresi, C.; Roatta, S. Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression. Front. Physiol. 2018, 9, 1078. [Google Scholar] [CrossRef]
- Hachiya, T.; Blaber, A.P.; Saito, M. Near-infrared spectroscopy provides an index of blood flow and vasoconstriction in calf skeletal muscle during lower body negative pressure. Acta Physiol. 2008, 193, 117–127. [Google Scholar] [CrossRef]
- Blaber, A.P.; Hinghofer-Szalkay, H.; Goswami, N. Blood volume redistribution during hypovolemia. Aviat. Space Environ. Med. 2013, 84, 59–64. [Google Scholar] [CrossRef]
- White, D.D.; Gotshall, R.W.; Tucker, A. Women have lower tolerance to lower body negative pressure than men. J. Appl. Physiol. 1996, 80, 1138–1143. [Google Scholar] [CrossRef]
- Carter, R.; Hinojosa-Laborde, C.; Convertino, V.A. Sex comparisons in muscle sympathetic nerve activity and arterial pressure oscillations during progressive central hypovolemia. Physiol. Rep. 2015, 3, e12420. [Google Scholar] [CrossRef]
- Rahman, M.A.; Goodhead, K.; Medcalf, J.F.; O’Connor, M.; Bennett, T. Haemodynamic responses to nonhypotensive central hypovolaemia induced by lower body negative pressure in men and women. Eur. J. Appl. Physiol. 1991, 63, 151–155. [Google Scholar] [CrossRef]
- Hudson, D.L.; Smith, M.L.; Raven, P.B. Physical fitness and hemodynamic response of women to lower body negative pressure. Med. Sci. Sports Exerc. 1987, 19, 375–381. [Google Scholar] [CrossRef]
- Eklund, B.; Kaijser, L.; Knutsson, E. Blood flow in resting (contralateral) arm and leg during isometric contraction. J. Physiol. 1974, 240, 111–124. [Google Scholar] [CrossRef]
- Rusch, N.; Shepherd, J.; Webb, R.C.; Vanhoutte, P. Different behavior of the resistance vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Circ. Res. 1981, 48, I118–I130. [Google Scholar]
- Newcomer, S.C.; Leuenberger, U.A.; Hogeman, C.S.; Handly, B.D.; Proctor, D.N. Different vasodilator responses of human arms and legs. J. Physiol. 2004, 556, 1001–1011. [Google Scholar] [CrossRef]
- Proctor, D.N.; Newcomer, S.C. Is There a Difference in Vascular Reactivity of the Arms and Legs? Med. Sci. Sports Exerc. 2006, 38, 1819–1828. [Google Scholar] [CrossRef]
- Usselman, C.W.; Nielson, C.A.; Luchyshyn, T.A.; Gimon, T.I.; Coverdale, N.S.; Van Uum, S.H.M.; Shoemaker, J.K. Hormone phase influences sympathetic responses to high levels of lower body negative pressure in young healthy women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R957–R963. [Google Scholar] [CrossRef]
- Shankhwar, V.; Urvec, J.; Steuber, B.; Schmid Zalaudek, K.; Saloň, A.; Hawliczek, A.; Bergauer, A.; Aljasmi, K.; Abdi, A.; Naser, A.; et al. Effects of menstrual cycle on hemodynamic and autonomic responses to central hypovolemia. Front. Cardiovasc. Med. 2024, 11, 1290703. [Google Scholar] [CrossRef]
- Meendering, J.R.; Torgrimson, B.N.; Houghton, B.L.; Halliwill, J.R.; Minson, C.T. Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H631–H642. [Google Scholar] [CrossRef]
- Frey, M.; Mathes, K.L.; Hoffler, G.W. Cardiovascular responses of women to lower body negative pressure. Aviat. Space Environ. Med. 1986, 57, 531–538. [Google Scholar]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Craig, J.C.; Broxterman, R.M.; Wilcox, S.L.; Chen, C.; Barstow, T.J. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin+ myoglobin]. J. Appl. Physiol. 2017, 123, 1571–1578. [Google Scholar] [CrossRef]
District | NIRS Parameters | Pearson’s R |
---|---|---|
Forearm | TOI slope | 0.43 |
HHb slope | 0.59 | |
THI delta | 0.94 | |
tHb delta | 0.91 | |
Thigh | TOI slope | 0.97 |
HHb slope | 0.93 | |
THI delta | 0.75 | |
tHb delta | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanelli, M.; Allois, R.; Roatta, S. Disentangling Blood Volume and Blood Flow Changes in Hemodynamic Monitoring of Upper and Lower Limbs Reveals Sex Differences in Response to Hypovolemic Stimuli. Appl. Sci. 2025, 15, 6675. https://doi.org/10.3390/app15126675
Romanelli M, Allois R, Roatta S. Disentangling Blood Volume and Blood Flow Changes in Hemodynamic Monitoring of Upper and Lower Limbs Reveals Sex Differences in Response to Hypovolemic Stimuli. Applied Sciences. 2025; 15(12):6675. https://doi.org/10.3390/app15126675
Chicago/Turabian StyleRomanelli, Marco, Ruben Allois, and Silvestro Roatta. 2025. "Disentangling Blood Volume and Blood Flow Changes in Hemodynamic Monitoring of Upper and Lower Limbs Reveals Sex Differences in Response to Hypovolemic Stimuli" Applied Sciences 15, no. 12: 6675. https://doi.org/10.3390/app15126675
APA StyleRomanelli, M., Allois, R., & Roatta, S. (2025). Disentangling Blood Volume and Blood Flow Changes in Hemodynamic Monitoring of Upper and Lower Limbs Reveals Sex Differences in Response to Hypovolemic Stimuli. Applied Sciences, 15(12), 6675. https://doi.org/10.3390/app15126675