Experimental Study of Temperature Distribution and Evolution Law of Fractured Rock Mass During Heat Transfer Process
Abstract
:1. Introduction
2. Test Overview
2.1. Specimen Preparation
2.2. Test Equipment
2.3. Test Methods and Procedures
2.3.1. Temperature Sensors’ Installation
2.3.2. Constant Temperature Heat Source Heating
2.3.3. Data Acquisition and Processing
3. Results and Discussion
3.1. Distribution of Temperature Field in Fractured Granite
3.2. Variation Patterns of Temperature at Monitoring Points
3.3. The Average Heating Rate at Monitoring Points
3.4. Temperature Difference Between the Left and Right Sides of the Fracture
3.5. Temperature Gradient Evolution in Fractured Granite
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin symbols | |
A-A, B-B, E-E, G-G, H-H | Vertical temperature monitoring lines |
F-F | Horizontal temperature monitoring line |
C-C, D-D | Oblique temperature monitoring lines |
Vertical distance from the heat source (mm) | |
Temperature (℃) | |
Temperature gradient (℃/mm) | |
Heat source temperature (℃) | |
Rock temperature (℃) | |
Steady temperature (℃) | |
Uncertainty | |
Greek symbols | |
Temperature difference (℃) | |
Heating time interval (s) | |
The average heating rate (°C/h) | |
Subscripts | |
dr | Data recorder |
i | Indoor |
Max | Maximum |
Min | Minimum |
r | Rock mass |
s | System |
Acronyms | |
HDR | Hot dry rock |
XRD | X-ray diffraction |
References
- Zhang, L.; Chen, S.; Zhang, C. Geothermal power generation in China: Status and prospects. Energy Sci. Eng. 2019, 7, 1428–1450. [Google Scholar] [CrossRef]
- Hou, J.; Cao, M.; Liu, P. Development and utilization of geothermal energy in China: Current practices and future strategies. Renew. Energy 2018, 125, 401–412. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, S.; Ranjith, P.G.; Tian, W.; Tian, H.; Zheng, J.; Jiang, G.; Dou, B. A comprehensive review on mechanical responses of granite in enhanced geothermal systems (EGSs). J. Clean. Prod. 2023, 383, 135378. [Google Scholar] [CrossRef]
- Sharmin, T.; Khan, N.R.; Akram, M.S.; Ehsan, M.M. A state-of-the-art review on geothermal energy extraction, utilization, and improvement strategies: Conventional, hybridized, and enhanced geothermal systems. Int. J. Thermofluids 2023, 18, 100323. [Google Scholar] [CrossRef]
- Kolditz, O. Modelling flow and heat transfer in fractured rocks: Dimensional effect of matrix heat diffusion. Geothermics 1995, 24, 421–437. [Google Scholar] [CrossRef]
- Zhao, Z. On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput. Geotech. 2014, 59, 105–111. [Google Scholar] [CrossRef]
- Zhao, J.; Tso, C.P. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 633–641. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, G.; Wang, H. Heat extraction mechanism in a geothermal reservoir with rough-walled fracture networks. Int. J. Heat Mass Transf. 2018, 126, 1083–1093. [Google Scholar] [CrossRef]
- Wang, G.; Ma, X.; Song, X.; Li, G. Modeling flow and heat transfer of fractured reservoir: Implications for a multi-fracture enhanced geothermal system. J. Clean. Prod. 2022, 365, 132708. [Google Scholar] [CrossRef]
- Zhang, W.; Qu, Z.; Guo, T.; Wang, Z. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress. Renew. Energy 2019, 143, 855–871. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Z.; Xie, X.; Hu, Y. Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance. Renew. Energy 2021, 181, 1440–1458. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Dai, X.; Song, H.; Zhang, S. Thermo-coupled FSI analysis of LN2 jet impinging on hot dry rock. Appl. Therm. Eng. 2020, 165, 114621. [Google Scholar] [CrossRef]
- Xiong, F.; Sun, H.; Ye, Z.; Zhang, Q. Heat extraction analysis for nonlinear heat flow in fractured geothermal reservoirs. Comput. Geotech. 2022, 144, 104641. [Google Scholar] [CrossRef]
- Yao, C.; Shao, Y.; Yang, J.; Huang, F.; He, C.; Jiang, Q.; Zhou, C. Effects of non-darcy flow on heat-flow coupling process in complex fractured rock masses. J. Nat. Gas Sci. Eng. 2020, 83, 103536. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, Y.; Lin, X.; Shi, Y.; Zhang, Y.; Zhou, L.; Shen, Y. A thermo-hydro-mechanical simulation on the impact of fracture network connectivity on the production performance of a multi-fracture enhanced geothermal system. Geothermics 2024, 122, 103070. [Google Scholar] [CrossRef]
- Jin, Y.; He, C.; Yao, C.; Sun, Z.; Zhang, X.; Yang, J.; Jiang, Q.; Zhou, C. Effects of in-situ stress on heat transfer in fracture networks. Geomech. Energy Environ. 2024, 37, 100516. [Google Scholar] [CrossRef]
- Cao, R.; Shi, J.; Jia, Z.; Cao, C.; Cheng, L.; Liu, G. A modified 3d-EDFM method considering fracture width variation due to thermal stress and its application in enhanced geothermal system. J. Hydrol. 2023, 623, 129749. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Wang, H.; Xing, S.; Long, M.; Liu, Y. Determination of heat transfer representative element volume and three-dimensional thermal conductivity tensor of fractured rock masses. Int. J. Rock Mech. Min. Sci. 2023, 170, 105528. [Google Scholar] [CrossRef]
- Zhou, R.; Zhan, H.; Wang, Y. On the role of rock matrix to heat transfer in a fracture-rock matrix system. J. Contam. Hydrol. 2022, 245, 103950. [Google Scholar] [CrossRef]
- Ma, Y.; Gan, Q.; Zhang, Y.; Huang, Y. Experimental research on the heat transfer characteristics of fluid flowing through rock with intersecting fractures. Geothermics 2022, 107, 102587. [Google Scholar] [CrossRef]
- He, Y.; Bai, B.; Hu, S.; Li, X. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Comput. Geotech. 2016, 80, 312–321. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Gao, X.; Ma, Y.; Hu, Z. Experimental and numerical investigation of seepage and heat transfer in rough single fracture for thermal reservoir. Geothermics 2021, 95, 102163. [Google Scholar] [CrossRef]
- Tian, X.; Ye, Z. Experimental study on convection heat transfer properties in rough-walled fractures of granite: The effect of fracture roughness. Geothermics 2024, 122, 103085. [Google Scholar] [CrossRef]
- Liu, J.; Xie, H.; Li, C.; Hu, J.; Luo, Y.; Liu, B.; Wang, Z. Effect of complex void structures on flow channeling and heterogeneous heat transfer in fractured rocks. J. Hydrol. 2024, 639, 131654. [Google Scholar] [CrossRef]
- Xiong, F.; Jiang, Q.; Ye, Z.; Zhang, X. Nonlinear flow behavior through rough-walled rock fractures: The effect of contact area. Comput. Geotech. 2018, 102, 179–195. [Google Scholar] [CrossRef]
- Brown, D.W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In Proceedings of Twenty-Fifth Workshop on Geothermal Reservoir Engineering; Stanford University: Stanford, CA, USA, 2000. [Google Scholar]
- Liu, X.; Wang, Y.; Li, S.; Wang, J. Convection heat transfer of supercritical CO2 in a single fracture in enhanced geothermal systems. Int. Commun. Heat Mass Transf. 2021, 123, 105170. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, L.; Wang, W.; Jiang, P. Core-scale investigation of convective heat transfer of supercritical pressure CO2 in hot rock fracture with various inclinations. Appl. Therm. Eng. 2021, 188, 116648. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, P.; Wang, Z.; Xu, R. Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems. Appl. Therm. Eng. 2017, 115, 923–936. [Google Scholar] [CrossRef]
- Song, W.; Wang, C.; Du, Y.; Shen, B.; Chen, S.; Jiang, Y. Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system. Energy 2020, 205, 118071. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, H.; Fan, L.; Jia, Q.; Zhang, T.; Zhang, X.; Han, D.; Tan, Y.; Liu, J. A literature review of using supercritical CO2 for geothermal energy extraction: Potential, methods, challenges, and perspectives. Renew. Energy Focus 2024, 51, 100637. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Lv, J.; Yang, G.; Xia, J. Comparative investigation of heat extraction performance in 3d self-affine rough single fractures using CO2, H2O and H2O as heat transfer fluid. Renew. Energy 2024, 235, 121309. [Google Scholar] [CrossRef]
- Nath, F.; Mahmood, M.N.; Ofosu, E.; Khanal, A. Enhanced geothermal systems: A critical review of recent advancements and future potential for clean energy production. Geoenergy Sci. Eng. 2024, 243, 213370. [Google Scholar] [CrossRef]
- Liu, K.; Xi, B.; Gao, P.; He, S.; Dong, Y.; Chen, L. Experimental study on heat transfer characteristics of rock mass with single fracture in geothermal reservoir. Therm. Sci. Eng. Prog. 2025, 62, 103631. [Google Scholar] [CrossRef]
- Beirão, S.G.S.; Ribeiro, A.P.C.; Lourenço, M.J.V.; Santos, F.J.V.; Nieto De Castro, C.A. Thermal conductivity of humid air. Int. J. Thermophys. 2012, 33, 1686–1703. [Google Scholar] [CrossRef]
- Cho, W.J.; Kwon, S.; Choi, J.W. The thermal conductivity for granite with various water contents. Eng. Geol. 2009, 107, 167–171. [Google Scholar] [CrossRef]
- Pan, J.; Feng, Z.; Zhang, Y.; Xi, X.; Miao, S.; Cai, M. Experimental study on evaluation of porosity, thermal conductivity, UCS, and elastic modulus of granite after thermal and chemical treatments by using p-wave velocity. Geoenergy Sci. Eng. 2023, 230, 212184. [Google Scholar] [CrossRef]
- Zhao, X.G.; Zhao, Z.; Guo, Z.; Cai, M.; Li, X.; Li, P.F.; Chen, L.; Wang, J. Influence of thermal treatment on the thermal conductivity of beishan granite. Rock Mech. Rock Eng. 2018, 51, 2055–2074. [Google Scholar] [CrossRef]
- Xi, B.; He, S.; Chen, Z.; Li, X.; Dong, Y.; Yang, X.; Xin, G. Thermal shock factor measurement and its evolution in granite under conduction heating. Chin. J. Rock Mech. Eng. 2020, 39, 1356–1368. [Google Scholar] [CrossRef]
Mineral Component | Content/% | Mineral Component | Content/% |
---|---|---|---|
Quartz | 25 | Calcite | 6 |
Plagioclase | 31 | Chlorite | 1 |
Orthoclase | 11 | Gypsum | 1 |
Black mica | 13 | Others | 1 |
Tremolite | 11 |
Monitoring Lines | Heat Source Temperature(, °C) | Fitting Equation | R2 |
---|---|---|---|
A-A | 60 | 0.991 | |
70 | 0.993 | ||
80 | 0.996 | ||
90 | 0.996 | ||
100 | 0.998 | ||
B-B | 60 | 0.989 | |
70 | 0.990 | ||
80 | 0.993 | ||
90 | 0.993 | ||
100 | 0.996 | ||
C-C | 60 | 0.994 | |
70 | 0.997 | ||
80 | 0.998 | ||
90 | 0.998 | ||
100 | 0.996 | ||
D-D | 60 | 0.993 | |
70 | 0.994 | ||
80 | 0.988 | ||
90 | 0.991 | ||
100 | 0.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, B.; Liu, K.; Fan, Q.; Han, F.; Zhao, W. Experimental Study of Temperature Distribution and Evolution Law of Fractured Rock Mass During Heat Transfer Process. Appl. Sci. 2025, 15, 6631. https://doi.org/10.3390/app15126631
Xi B, Liu K, Fan Q, Han F, Zhao W. Experimental Study of Temperature Distribution and Evolution Law of Fractured Rock Mass During Heat Transfer Process. Applied Sciences. 2025; 15(12):6631. https://doi.org/10.3390/app15126631
Chicago/Turabian StyleXi, Baoping, Keliu Liu, Qiang Fan, Fuzhi Han, and Wenzhuo Zhao. 2025. "Experimental Study of Temperature Distribution and Evolution Law of Fractured Rock Mass During Heat Transfer Process" Applied Sciences 15, no. 12: 6631. https://doi.org/10.3390/app15126631
APA StyleXi, B., Liu, K., Fan, Q., Han, F., & Zhao, W. (2025). Experimental Study of Temperature Distribution and Evolution Law of Fractured Rock Mass During Heat Transfer Process. Applied Sciences, 15(12), 6631. https://doi.org/10.3390/app15126631