Neurological Underpinnings of Socio-Cognitive Dysfunction in Schizophrenia and Autism Spectrum Disorder: Evidence from “Broken” Mirror Neurons
Abstract
:1. Introduction
2. Autism Spectrum Disorder (ASD) vs. Schizophrenia: General Overview
2.1. Autism Spectrum Disorder
2.2. Schizophrenia
2.3. Commonalities Between ASD and Schizophrenia
3. The Mechanisms Behind Broken MNs in ASD and Schizophrenia
3.1. Mu Rhythm Suppression in ASD
3.2. Mu Rhythm Suppression in Schizophrenia
3.3. Methodological Limitations and Strengths of the Included Studies
4. Conclusions
Future Research Implications and Clinical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci. Biobehav. Rev. 2009, 33, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef]
- Bonini, L.; Rotunno, C.; Arcuri, E.; Gallese, V. Mirror neurons 30 years later: Implications and applications. Trends Cogn. Sci. 2022, 26, 767–781. [Google Scholar] [CrossRef]
- Bonini, L.; Rozzi, S.; Serventi, F.U.; Simone, L.; Ferrari, P.F.; Fogassi, L. Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cereb. Cortex 2010, 20, 1372–1385. [Google Scholar] [CrossRef]
- Gallese, V.; Keysers, C.; Rizzolatti, G. A unifying view of the basis of social cognition. Trends Cogn. Sci. 2004, 8, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Gallese, V.; Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 1998, 2, 493–501. [Google Scholar] [CrossRef]
- de Jong, T.; Van Gog, T.; Jenks, K.; Manlove, S.; Van Hell, J.; Jolles, J.; Van Merrienboer, J.; Van Leeuwen, T.; Boschloo, A. Explorations in Learning and the Brain: On the Potential of Cognitive Neuroscience for Educational Science; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Leslie, K.R.; Johnson-Frey, S.H.; Grafton, S.T. Functional imaging of face and hand imitation: Towards a motor theory of empathy. Neuroimage 2004, 21, 601–607. [Google Scholar] [CrossRef]
- Kilner, J.M.; Neal, A.; Weiskopf, N.; Friston, K.J.; Frith, C.D. Evidence of mirror neurons in human inferior frontal gyrus. J. Neurosci. 2009, 29, 10153–10159. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, S.; Schillinger, F.L.; Bülthoff, H.H.; Schultz, J.; Uludag, K. fMRI adaptation between action observation and action execution reveals cortical areas with mirror neuron properties in human BA 44/45. Front. Hum. Neurosci. 2016, 10, 78. [Google Scholar] [CrossRef]
- Gazzola, V.; Keysers, C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cereb. Cortex 2009, 19, 1239–1255. [Google Scholar] [CrossRef]
- Singer, T. The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neurosci. Biobehav. Rev. 2006, 30, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Théoret, H.; Pascual-Leone, A. Language acquisition: Do as you hear. Curr. Biol. 2002, 12, R736–R737. [Google Scholar] [CrossRef]
- Cerri, G.; Cabinio, M.; Blasi, V.; Borroni, P.; Iadanza, A.; Fava, E.; Fornia, L.; Verpozzi, V.; Riva, M.; Casarotti, A.; et al. The mirror neuron system and the strange case of Broca’s area. Hum. Brain Mapp. 2015, 36, 1010–1027. [Google Scholar] [CrossRef] [PubMed]
- Damiani, D.; Nascimento, A.M.; Pereira, L.K. Cortical brain functions–the brodmann legacy in the 21st century. Arq. Bras. Neurocir. Braz. Neurosurg. 2020, 39, 261–270. [Google Scholar] [CrossRef]
- Valizadeh, A.; Mbwogge, M.; Rasouli Yazdi, A.; Hedayati Amlashi, N.; Haadi, A.; Shayestefar, M.; Moassefi, M. The mirror mechanism in schizophrenia: A systematic review and qualitative meta-analysis. Front. Psychiatry 2022, 13, 884828. [Google Scholar] [CrossRef] [PubMed]
- Oberman, L.M.; McCleery, J.P.; Ramachandran, V.S.; Pineda, J.A. EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing 2007, 70, 2194–2203. [Google Scholar] [CrossRef]
- Genzer, S.; Ong, D.C.; Zaki, J.; Perry, A. Mu rhythm suppression over sensorimotor regions is associated with greater empathic accuracy. Soc. Cogn. Affect. Neurosci. 2022, 17, 788–801. [Google Scholar] [CrossRef]
- Liew, S.L.; Aziz-Zadeh, L. The human mirror neuron system, social control, and language. In Handbook of Neurosociology; Springer: Dordrecht, The Netherlands, 2013; pp. 183–205. [Google Scholar]
- Chisholm, K.; Lin, A.; Armando, M. Schizophrenia spectrum disorders and autism spectrum disorder. In Psychiatric Symptoms and Comorbidities in Autism Spectrum Disorder; Springer: Berlin/Heidelberg, Germany, 2016; pp. 51–66. [Google Scholar]
- Gallese, V.; Rochat, M.J.; Berchio, C. The mirror mechanism and its potential role in autism spectrum disorder. Dev. Med. Child Neurol. 2013, 55, 15–22. [Google Scholar] [CrossRef]
- Jeste, S.S.; Geschwind, D.H. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat. Rev. Neurol. 2014, 10, 74–81. [Google Scholar] [CrossRef]
- Sicile-Kira, C. Autism Spectrum Disorder: The Complete Guide to Understanding Autism; Tarcher Perigee: New York, NY, USA, 2014. [Google Scholar]
- Attwood, T. Asperger’s Syndrome. Tizard Learn. Disabil. Rev. 2006, 11, 3–11. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Goldstein, G.; Johnson, C.R.; Minshew, N.J. Attentional processes in autism. J. Autism Dev. Disord. 2001, 31, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Parellada, M.; Penzol, M.J.; Pina, L.; Moreno, C.; González-Vioque, E.; Zalsman, G.; Arango, C. The neurobiology of autism spectrum disorders. Eur. Psychiatry 2014, 29, 11–19. [Google Scholar] [CrossRef]
- Nicpon, M.F.; Doobay, A.F.; Assouline, S.G. Parent, teacher, and self-perceptions of psychosocial functioning in intellectually gifted children and adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2010, 40, 1028–1038. [Google Scholar] [CrossRef]
- Fombonne, E. The rising prevalence of autism. J. Child Psychol. Psychiatry 2018, 59, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Javitt, D.C. Balancing therapeutic safety and efficacy to improve clinical and economic outcomes in schizophrenia: A clinical overview. Am. J. Manag. Care 2014, 20 (Suppl. S8), S160–S165. [Google Scholar] [PubMed]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Adamu, M.J.; Qiang, L.; Nyatega, C.O.; Younis, A.; Kawuwa, H.B.; Jabire, A.H.; Saminu, S. Unraveling the pathophysiology of schizophrenia: Insights from structural magnetic resonance imaging studies. Front. Psychiatry 2023, 14, 1188603. [Google Scholar] [CrossRef]
- Li, G.; Dai, J.; Liu, H.; Lin, Y.; Liu, Q.; Zheng, K.; Li, S.; Chen, S.; Ye, Y. Association study between genetic variants and the risk of schizophrenia in the Chinese population based on GWAS-implicated 6p21. 3–23.1 human genome region: A case-control study. BMC Psychiatry 2021, 21, 483. [Google Scholar] [CrossRef]
- Jenkins, T.A. Perinatal complications and schizophrenia: Involvement of the immune system. Front. Neurosci. 2013, 7, 110. [Google Scholar] [CrossRef]
- Vila-Badia, R.; Del Cacho, N.; Butjosa, A.; Arumí, C.S.; Santjusto, M.E.; Abella, M.; Cuevas-Esteban, J.; Pardo, M.; Muñoz-Samons, D.; Usall, J. Prevalence and types of childhood trauma in first episode psychosis patients. Relation with clinical onset variables. J. Psychiatr. Res. 2022, 146, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Nyatega, C.O.; Qiang, L.; Adamu, M.J.; Younis, A.; Kawuwa, H.B. Altered dynamic functional connectivity of cuneus in schizophrenia patients: A resting-state fMRI study. Appl. Sci. 2021, 11, 11392. [Google Scholar] [CrossRef]
- Ippolito, G.; Bertaccini, R.; Tarasi, L.; Di Gregorio, F.; Trajkovic, J.; Battaglia, S.; Romei, V. The role of alpha oscillations among the Main neuropsychiatric disorders in the adult and developing human brain: Evidence from the last 10 years of research. Biomedicine 2022, 10, 3189. [Google Scholar] [CrossRef]
- Reddy-Thootkur, M.; Kraguljac, N.V.; Lahti, A.C. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders–A systematic review of magnetic resonance spectroscopy studies. Schizophr. Res. 2022, 249, 74–84. [Google Scholar] [CrossRef]
- Correll, C.U.; Schooler, N.R. Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef]
- Bozikas, V.P.; Andreou, C. Longitudinal studies of cognition in first episode psychosis: A systematic review of the literature. Aust. N. Z. J. Psychiatry 2011, 45, 93–108. [Google Scholar] [CrossRef]
- Valentina, C.; De Carolis, A.; Trovini, G.; Dehning, J.; Di Pietro, S.; Curto, M.; Donato, N.; De Pisa, E.; Girardi, P.; Comparelli, A. Neurocognition in schizophrenia: From prodrome to multi-episode illness. Psychiatry Res. 2014, 220, 129–134. [Google Scholar]
- Green, M.F.; Horan, W.P.; Lee, J. Nonsocial and social cognition in schizophrenia: Current evidence and future directions. World Psychiatry 2019, 18, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Savla, G.N.; Vella, L.; Armstrong, C.C.; Penn, D.L.; Twamley, E.W. Deficits in domains of social cognition in schizophrenia: A meta-analysis of the empirical evidence. Schizophr. Bull. 2013, 39, 979–992. [Google Scholar] [CrossRef]
- Matthews, N.L.; Goldberg, W.A. Theory of mind in children with and without autism spectrum disorder: Associations with the sibling constellation. Autism 2018, 22, 311–321. [Google Scholar] [CrossRef]
- Samson, F.; Mottron, L.; Jemel, B.; Belin, P.; Ciocca, V. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks? J. Autism Dev. Disord. 2006, 36, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, F.; Hosseini, S.; Tahamtan, M.; Bayat, M. The Impaired Theory of Mind in Autism Spectrum Disorders and the Possible Remediative Role of Transcranial Direct Current Stimulation. J. Adv. Med. Sci. Appl. Technol. 2017, 3, 175–178. [Google Scholar] [CrossRef]
- Begeer, S.; Malle, B.F.; Nieuwland, M.S.; Keysar, B. Using theory of mind to represent and take part in social interactions: Comparing individuals with high-functioning autism and typically developing controls. Eur. J. Dev. Psychol. 2010, 7, 104–122. [Google Scholar] [CrossRef]
- Owen, M.J.; O’Donovan, M.C. The genetics of cognition in schizophrenia. In Genomic Psychiatry; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Sugranyes, G.; Kyriakopoulos, M.; Corrigall, R.; Taylor, E.; Frangou, S. Autism spectrum disorders and schizophrenia: Meta-analysis of the neural correlates of social cognition. PLoS ONE 2011, 6, e25322. [Google Scholar] [CrossRef] [PubMed]
- King, B.H.; Lord, C. Is schizophrenia on the autism spectrum? Brain Res. 2011, 1380, 34–41. [Google Scholar] [CrossRef]
- Eack, S.M.; Bahorik, A.L.; McKnight, S.A.; Hogarty, S.S.; Greenwald, D.P.; Newhill, C.E.; Phillips, M.L.; Keshavan, M.S.; Minshew, N.J. Commonalities in social and non-social cognitive impairments in adults with autism spectrum disorder and schizophrenia. Schizophr. Res. 2013, 148, 24–28. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Oberman, L.M. Broken mirrors: A theory of autism. Sci. Am. 2006, 295, 62–69. [Google Scholar] [CrossRef]
- Pacherie, E.; Dokic, J. From mirror neurons to joint actions. Cogn. Syst. Res. 2006, 7, 101–112. [Google Scholar] [CrossRef]
- Praszkier, R. Empathy, mirror neurons and SYNC. Mind Soc. 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Debes, R. Which empathy? Limitations in the mirrored “understanding” of emotion. Synthese 2010, 175, 219–239. [Google Scholar] [CrossRef]
- Altschuler, M.; Sideridis, G.; Kala, S.; Warshawsky, M.; Gilbert, R.; Carroll, D.; Burger-Caplan, R.; Faja, S. Measuring Individual Differences in Cognitive, Affective, and Spontaneous Theory of Mind Among School-Aged Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2018, 48, 3945–3957. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M.; Woods, R.P.; Brass, M.; Bekkering, H.; Mazziotta, J.C.; Rizzolatti, G. Cortical mechanisms of human imitation. Science 1999, 286, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Deschrijver, E.; Wiersema, J.R.; Brass, M. Disentangling neural sources of the motor interference effect in high functioning autism: An EEG-study. J. Autism Dev. Disord. 2017, 47, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.T.; Decety, J.; Yang, C.Y.; Liu, J.L.; Cheng, Y. Unbroken mirror neurons in autism spectrum disorders. J. Child Psychol. Psychiatry 2010, 51, 981–988. [Google Scholar] [CrossRef]
- Oberman, L.M.; Ramachandran, V.S. The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol. Bull. 2007, 133, 310. [Google Scholar] [CrossRef]
- Sotoodeh, M.S.; Chien, S.H.L.; Hadjikhani, N. Visual attention modulates mu suppression during biological motion perception in autistic individuals. Eur. J. Neurosci. 2024, 60, 6668–6685. [Google Scholar] [CrossRef]
- Cole, E.J.; Barraclough, N.E.; Enticott, P.G. Investigating mirror system (MS) activity in adults with ASD when inferring others’ intentions using both TMS and EEG. J. Autism Dev. Disord. 2018, 48, 2350–2367. [Google Scholar] [CrossRef]
- Dumas, G.; Soussignan, R.; Hugueville, L.; Martinerie, J.; Nadel, J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014, 1585, 108–119. [Google Scholar] [CrossRef]
- Spaulding, S. Mirror neurons and social cognition. Mind Lang. 2013, 28, 233–257. [Google Scholar] [CrossRef]
- Hickok, G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. J. Cogn. Neurosci. 2009, 21, 1229–1243. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nat. Rev. Neurosci. 2010, 11, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Andreou, M.; Skrimpa, V. Theory of mind deficits and neurophysiological operations in autism spectrum disorders: A review. Brain Sci. 2020, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.F.D.C. Reflecting on the mirror neuron system in autism: A systematic review of current theories. Dev. Cogn. Neurosci. 2013, 3, 91–105. [Google Scholar] [CrossRef]
- Jonathan, B. The social brain hypothesis of schizophrenia. World Psychiatry 2006, 5, 77. [Google Scholar]
- Green, M.F.; Horan, W.P. Social cognition in schizophrenia. Curr. Dir. Psychol. Sci. 2010, 19, 243–248. [Google Scholar] [CrossRef]
- Horan, W.P.; Pineda, J.A.; Wynn, J.K.; Iacoboni, M.; Green, M.F. Some markers of mirroring appear intact in schizophrenia: Evidence from mu suppression. Cogn. Affect. Behav. Neurosci. 2014, 14, 1049–1060. [Google Scholar] [CrossRef]
- Mitra, S.; Nizamie, S.H.; Goyal, N.; Tikka, S.K. Mu-wave activity in schizophrenia: Evidence of a dysfunctional mirror neuron system from an indian study. Indian J. Psychol Med. 2014, 36, 276–281. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; Lewine, R.R. Rethinking thought disorder. Schizophr. Bull. 2017, 43, 514–522. [Google Scholar] [CrossRef]
- Minichino, A.; Singh, F.; Pineda, J.; Friederich, E.; Cadenhead, K.S. Biological Motion induced mu suppression is reduced in Early Psychosis (EP) patients with active negative symptoms and Autism Spectrum Disorders (ASD). Psychiatry Res. 2016, 238, 374–377. [Google Scholar] [CrossRef]
- Oberman, L.M.; Hubbard, E.M.; McCleery, J.P.; Altschuler, E.L.; Ramachandran, V.S.; Pineda, J.A. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn. Brain Res. 2005, 24, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Oberman, L.M.; Pineda, J.A.; Ramachandran, V.S. The human mirror neuron system: A link between action observation and social skills. Soc. Cogn. Affect. Neurosci. 2007, 2, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, E.R.; Pineda, J.A. Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. Behav. Brain Res. 2007, 183, 188–194. [Google Scholar] [CrossRef]
- Singh, F.; Pineda, J.; Cadenhead, K.S. Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in first episode of psychosis. Schizophr. Res. 2011, 130, 182–186. [Google Scholar] [CrossRef]
- McCormick, L.M.; Brumm, M.C.; Beadle, J.N.; Paradiso, S.; Yamada, T.; Andreasen, N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res. Neuroimaging 2012, 201, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.K.; Green, M.F.; Hellemann, G.; Reavis, E.A.; Marder, S.R. A dose-finding study of oxytocin using neurophysiological measures of social processing. Neuropsychopharmacology 2019, 44, 289–294. [Google Scholar] [CrossRef]
- Marwick, K.; Hall, J. Social cognition in schizophrenia: A review of face processing. Br. Med. Bull. 2008, 88, 43–58. [Google Scholar] [CrossRef]
- Hyatt, C.J.; Wexler, B.E.; Pittman, B.; Nicholson, A.; Pearlson, G.D.; Corbera, S.; Bell, M.D.; Pelphrey, K.; Calhoun, V.D.; Assaf, M. Atypical dynamic functional network connectivity state engagement during social–emotional processing in schizophrenia and autism. Cereb. Cortex 2022, 32, 3406–3422. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Supekar, K.; Lynch, C.J.; Khouzam, A.; Phillips, J.; Feinstein, C.; Ryali, S.; Menon, V. Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 2013, 70, 869–879. [Google Scholar] [CrossRef]
- Yang, G.J.; Murray, J.D.; Wang, X.J.; Glahn, D.C.; Pearlson, G.D.; Repovs, G.; Krystal, J.H.; Anticevic, A. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc. Natl. Acad. Sci. USA 2016, 113, E219–E228. [Google Scholar] [CrossRef]
- Mehta, U.M.; Thirthalli, J.; Aneelraj, D.; Jadhav, P.; Gangadhar, B.N.; Keshavan, M.S. Mirror neuron dysfunction in schizophrenia and its functional implications: A systematic review. Schizophr. Res. 2014, 160, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Gaspar, P.A.; Bermudez, D.H.; Aburto-Ponce, M.B.; Beggel, O.; Javitt, D.C. Disrupted third visual pathway function in schizophrenia: Evidence from real and implied motion processing. NeuroImage Clin. 2024, 41, 103570. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.J.; Darabseh, R.S. Mirror Neuron Cells, Autism, Language Deficit, and the Potential Role of Artificial Intelligence. J. Ecohumanism 2024, 3, 12552–12559. [Google Scholar] [CrossRef]
- Dickerson, K.; Gerhardstein, P.; Moser, A. The role of the human mirror neuron system in supporting communication in a digital world. Front. Psychol. 2017, 8, 698. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population and clinical data | Participants with ASD or schizophrenia | Studies involving disorders other than ASD or schizophrenia. Animal or in vitro studies |
Study type | Empirical peer-reviewed research articles | Opinion papers or non-peer-reviewed work, unpublished dissertations, conference abstracts |
Methodology | EEG as the main technique | Studies using only pharmacological or behavioural interventions without neurophysiological measurements of the MNS. Studies using other than EEG neuroimaging tests. |
Publication date | Published from 2010 onward | Older publications |
Language | Published in English | Publications in other languages than English |
Outcomes | Reports on MNS activity and mu rhythm suppression in ASD and schizophrenia | Studies not isolating MNS-related processes (e.g., only general social cognition without measuring mirroring activity) |
Authors | Participants | Method | Findings |
---|---|---|---|
[59] | 46 participants 23 ASD and 23 controls | EEG | No significant variation between ASD and controls in P3 ERP component. Larger number RP (readiness potential) Laplacian both in congruent and incongruent trials in ASD. No effect of intended action on early visual processing detected. |
[64] | 40 participants 10 ASD and 30 controls | EEG | When mu frequency was distinguished into two sub-bands, group difference was observed in the upper sub-band (10–12/13 Hz) of the sensorimotor cortex in ASD in the condition of gestural observation; no significant variation in lower sub-band (8–10 Hz) among the two groups. No globally dysfunctional MN system in ASD. |
[62] | 40 participants 20 with high-functioning autism and 20 controls | EEG, Eye-Tracker | Visual attention in both groups had a significant impact on mu suppression. The mu rhythm suppression of the ASD group was reduced during biological motion observation. |
[63] | 43 participants with autistic traits | EEG, Eye-Tracker, TMS-EMG | Lower level of mu suppression in the right hemisphere in ASD during mentalising task. Positive correlation of lower performance in mentalising task with poorer activation of mirror neurons in left hemisphere but not linked to level of autistic traits. Autistic traits predictive factor for mu suppression in the 8–10 Hz for mentalising task and poorer mirror neuron firing in right hemisphere. During non-mentalising task, no low-level mu suppression detected. |
[60] | 40 participants 20 male ASD and 20 controls | EEG | No significant variation among groups in mu suppression occurring from EEG monitoring of observation and imitation of a gestural action. Stronger mu suppression during gestural action observation than dot observation in ASD. No imitation of the observed action while MN system activation intact in ASD. Relation between attenuated communication capacities and reduced mu rhythm. |
[72] | 32 outpatients with schizophrenia and 26 controls | EEG | Linear increase in mu rhythm suppression in conditions with higher social demand for both groups. Schizophrenia patients self-reported low empathic and mentalising ability, however, the modulation of MN system functioning appeared relatively intact. |
[82] | 47 participants with schizophrenia | EEG | Attenuated mu rhythm suppression was substantially boosted by OT doses of 36 and 48 IU. No effect of the OT on face affect pupillometry test. |
[81] | 32 participants with schizophrenia: 8 actively psychotic patients, 8 patients in the residual phase of illness, 16 healthy controls | EEG | Greater mu suppression over the left sensorimotor cortex in patients with active psychotic schizophrenia compared to both the residual phase SSD patients and healthy controls. Severity of symptoms correlated with the level of mu suppression. |
[73] | 15 drug-naïve or drug-free patients with schizophrenia and 15 healthy controls | EEG | Significant differences in the level of mu rhythm suppression over the SMC among patients with schizophrenia and controls. Negative correlation between mu suppression over the rSMC and thought disturbance cluster on PANSS. |
[76] | Studies involving schizophrenia patients with active negative symptoms, high-functioning ASD participants and healthy controls | EEG | Reduced mu rhythm suppression in both ASD group and EP group. Negative correlation between reduced mu suppression and degree of severity of negative symptoms in EP group. |
Position | Study | Population | Key Findings | Interpretation |
---|---|---|---|---|
Supporting Evidence | [61] | ASD | Reduced mu suppression during action observation | Suggests deficient sensorimotor mirroring contributing to social deficits |
[73] | Schizophrenia | Attenuated mu rhythm suppression during motor tasks | Indicates impaired MNS functioning in schizophrenia | |
[76] | Early psychosis and ASD | Reduced biological motion-induced mu suppression linked to negative symptoms | Supports MNS impairment as a shared mechanism in both conditions | |
Opposing Evidence | [60] | ASD | Typical mu suppression and preserved imitation abilities | Challenges the universality of MNS deficits in ASD |
[72] | Schizophrenia | Normal mu suppression in response to biological motion | Implies intact mirroring mechanisms in at least some schizophrenia subgroups | |
[62] | ASD | mu suppression modulated by visual attention | Suggests attentional factors may account for prior findings of MNS dysfunction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreou, M.; Skrimpa, V.; Peristeri, E. Neurological Underpinnings of Socio-Cognitive Dysfunction in Schizophrenia and Autism Spectrum Disorder: Evidence from “Broken” Mirror Neurons. Appl. Sci. 2025, 15, 6629. https://doi.org/10.3390/app15126629
Andreou M, Skrimpa V, Peristeri E. Neurological Underpinnings of Socio-Cognitive Dysfunction in Schizophrenia and Autism Spectrum Disorder: Evidence from “Broken” Mirror Neurons. Applied Sciences. 2025; 15(12):6629. https://doi.org/10.3390/app15126629
Chicago/Turabian StyleAndreou, Maria, Vasileia Skrimpa, and Eleni Peristeri. 2025. "Neurological Underpinnings of Socio-Cognitive Dysfunction in Schizophrenia and Autism Spectrum Disorder: Evidence from “Broken” Mirror Neurons" Applied Sciences 15, no. 12: 6629. https://doi.org/10.3390/app15126629
APA StyleAndreou, M., Skrimpa, V., & Peristeri, E. (2025). Neurological Underpinnings of Socio-Cognitive Dysfunction in Schizophrenia and Autism Spectrum Disorder: Evidence from “Broken” Mirror Neurons. Applied Sciences, 15(12), 6629. https://doi.org/10.3390/app15126629