Extensive Iterative Finite Element Analysis of Molar Uprighting with the Introduction of a Novel Method for Estimating Clinical Treatment Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model 1: Canine Retraction Simulation
2.2. Model 2: Molar Uprighting Simulation
2.3. Material Properties and Boundary Conditions
3. Results
3.1. Estimation of Treatment Duration and Real Clinical Time
3.2. Biomechanics of Molar Uprighting Using a Conventional Uprighting Spring
4. Discussion
4.1. Correlation of Iteration Time with Real Clinical Time
4.2. Tooth Movement Produced and Clinical Implications
4.3. Contact Forces and Load Transfer Mechanics
4.4. Bone Remodeling and Average Mean Stress in PDL
4.5. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magkavali-Trikka, P.; Emmanouilidis, G.; Papadopoulos, M.A. Mandibular Molar Uprighting Using Orthodontic Miniscrew Implants: A Systematic Review. Prog. Orthod. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Zachrisson, B.U.; Bantleon, H.-P. Optimal Mechanics for Mandibular Molar Uprighting. World J. Orthod. 2005, 6, 80–87. Available online: https://pubmed.ncbi.nlm.nih.gov/15794045/ (accessed on 1 April 2025). [PubMed]
- Sabri, R. Multidisciplinary Management of Permanent First Molar Extractions. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Ruellas, A.C.d.O.; Pithon, M.M.; dos Santos, R.L. Miniscrew-Supported Coil Spring for Molar Uprighting: Description. Dent. Press J. Orthod. 2013, 18, 45–49. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Ko, W.-C.; Huang, C.-S. Orthodontic Molar Uprighting—Literature Review. Taiwan. J. Orthod. 2009, 21, 2. [Google Scholar] [CrossRef]
- Burstone, C.J. The Mechanics of the Segmented Arch Techniques. Angle Orthod. 1966, 36, 99–120. [Google Scholar]
- Roberts, W.W., 3rd; Chacker, F.M.; Burstone, C.J. A Segmental Approach to Mandibular Molar Uprighting. Am. J. Orthod. 1982, 81, 177–184. [Google Scholar] [CrossRef]
- Bandela, V.; Kanaparthi, S. Finite Element Analysis and Its Applications in Dentistry. In Finite Element Methods and Their Applications; Baccouch, M., Ed.; IntechOpen: London, UK, 2021; pp. 1–19. [Google Scholar]
- Romanyk, D.L.; Vafaeian, B.; Addison, O.; Adeeb, S. The Use of Finite Element Analysis in Dentistry and Orthodontics: Critical Points for Model Development and Interpreting Results. Semin. Orthod. 2020, 26, 162–173. [Google Scholar] [CrossRef]
- Singh, J.R.; Kambalyal, P.; Jain, M.; Khandelwal, P. Revolution in Orthodontics: Finite Element Analysis. J. Int. Soc. Prev. Community Dent. 2016, 6, 110–114. [Google Scholar] [CrossRef]
- Cattaneo, P.M.; Cornelis, M.A. Orthodontic Tooth Movement Studied by Finite Element Analysis: An Update. What Can We Learn from These Simulations? Curr. Osteoporos. Rep. 2021, 19, 175–181. [Google Scholar] [CrossRef]
- Geramy, A.; Sheikhzadeh, S.; Majd, H. Second Molar Uprighting with Temporary Anchorage Devices: A Finite Element Study. J. Babol Univ. Med. Sci. 2018, 20, 7–12. [Google Scholar]
- Kojima, Y.; Mizuno, T.; Fukui, H. A Numerical Simulation of Tooth Movement Produced by Molar Uprighting Spring. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.E.; Faria, J.; Jaramillo Cevallos, K.; Chiqueto, K.; Machado, L.; Noritomi, P. Torqued and Conventional Cantilever for Uprighting Mesially Impacted Molars: A 3-Dimensional Finite Element Analysis. Am. J. Orthod. Dentofac. Orthop. 2022, 162, e203–e215. [Google Scholar] [CrossRef]
- Zheng, B.; Ran, J.; He, J.; Al-Yafrusee, E.S.A.M.; Zhao, Y.; Liu, Y. Three-Dimensional Finite Element Analysis of the Uprighting Movement of Mandibular Mesially Inclined Second Molars. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 314–320. [Google Scholar] [CrossRef]
- Hamanaka, R.; Yamaoka, S.; Anh, T.N.; Tominaga, J.-Y.; Koga, Y.; Yoshida, N. Numeric Simulation Model for Long-Term Orthodontic Tooth Movement with Contact Boundary Conditions Using the Finite Element Method. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 601–612. [Google Scholar] [CrossRef]
- Likitmongkolsakul, U.; Smithmaitrie, P.; Samruajbenjakun, B.; Aksornmuang, J. Development and Validation of 3D Finite Element Models for Prediction of Orthodontic Tooth Movement. Int. J. Dent. 2018, 2018, 4927503. [Google Scholar] [CrossRef]
- Dot, G.; Licha, R.; Goussard, F.; Sansalone, V. A New Protocol to Accurately Track Long-Term Orthodontic Tooth Movement and Support Patient-Specific Numerical Modeling. J. Biomech. 2021, 129, 110760. [Google Scholar] [CrossRef]
- Usmanova, Z.; Sunbuloglu, E. An In-Silico Approach to Modeling Orthodontic Tooth Movement Using Stimulus-Induced External Bone Adaptation. J. Mech. Behav. Biomed. Mater. 2021, 124, 104827. [Google Scholar] [CrossRef]
- Tamaya, N.; Kawamura, J.; Yanagi, Y. Tooth Movement Efficacy of Retraction Spring Made of a New Low Elastic Modulus Material, Gum Metal, Evaluated by the Finite Element Method. Materials 2021, 14, 2934. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Li, Q.; Wang, L.; Fan, Y. Simulation of Bone Remodelling in Orthodontic Treatment. Comput. Methods Biomech. Biomed. Engin. 2014, 17, 1042–1050. [Google Scholar] [CrossRef]
- Fathallah, A.; Hassine, T.; Gamaoun, F.; Wali, M. Three-Dimensional Coupling between Orthodontic Bone Remodeling and Superelastic Behavior of a NiTi Wire Applied for Initial Alignment. J. Orofac. Orthop. 2021, 82, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Zeno, K.G.; Ammoury, M.J. The Surge of Finite Element Analysis in the Study of Orthodontic Mechanics: Are the Findings Applicable in Practice? Semin. Orthod. 2023, 29, 308–316. [Google Scholar] [CrossRef]
- Ren, Y.; Maltha, J.C.; Van ’t Hof, M.A.; Kuijpers-Jagtman, A.M. Optimum Force Magnitude for Orthodontic Tooth Movement: A Mathematic Model. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 71–77. [Google Scholar] [CrossRef]
- Iwasaki, L.R.; Haack, J.E.; Nickel, J.C.; Morton, J. Human Tooth Movement in Response to Continuous Stress of Low Magnitude. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 175–183. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of Stress Distribution on Periodontal Ligament and Alveolar Bone by Various Tooth Movements—A 3D FEM Study. J. Oral Biol. Craniofac. Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
- Al-Khatib, S.; Berradja, A.; Celis, J.-P.; Willems, G. In Vitro Friction of Stainless Steel Arch Wire–Bracket Combinations in Air and Different Aqueous Solutions. Orthod. Craniofac. Res. 2005, 8, 96–105. [Google Scholar] [CrossRef]
- Michelberger, D.J.; Eadie, R.L.; Faulkner, M.G.; Glover, K.E.; Prasad, N.G.; Major, P.W. The Friction and Wear Patterns of Orthodontic Brackets and Archwires in the Dry State. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 662–674. [Google Scholar] [CrossRef]
- Sun, E.Q. Shear Locking and Hourglassing in MSC Nastran, ABAQUS, and ANSYS; Technical Report; Jefferson Lab: Newport News, VA, USA, 2006; pp. 1–9. Available online: https://www.jlab.org/sites/default/files/physics/ansys/shearLocking.pdf (accessed on 5 June 2025).
- Smith, R.J.; Burstone, C.J. Mechanics of Tooth Movement. Am. J. Orthod. 1984, 85, 294–307. [Google Scholar] [CrossRef]
- Roig-Vanaclocha, A.; Bustamante-Hernández, N.; Solá-Ruíz, M.F.; Fons-Badal, C.; Selva-Otaolaurruchi, E.; Agustín-Panadero, R. Efficacy of Miniscrews in Gaining Prosthetic Space for a Dental Implant to Replace the Mandibular First Molar: A Case Series. Appl. Sci. 2021, 11, 607. [Google Scholar] [CrossRef]
- Musilli, M.; Marsico, M.; Romanucci, A.; Grampone, F. Molar Uprighting with Mini Screws: Comparison among Different Systems and Relative Biomechanical Analysis. Prog. Orthod. 2010, 11, 166–173. [Google Scholar] [CrossRef]
- Martires, S.; Kamat, N.V.; Dessai, S.R. A CBCT Evaluation of Molar Uprighting by Conventional versus Microimplant-Assisted Methods: An in-Vivo Study. Dent. Press J. Orthod. 2018, 23, 35.e1–35.e9. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.E.; Janson, G.; Chiqueto, K.; Ferreira, E.; Rösing, C. Expanding Torque Possibilities: A Skeletally Anchored Torqued Cantilever for Uprighting “Kissing Molars”. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 588–598. [Google Scholar] [CrossRef]
- Ghafari, J.G.; Macari, A.T.; Haddad, R.V. Deep Bite: Treatment Options and Challenges. Semin. Orthod. 2013, 19, 253–266. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.; Larson, B.; Sarver, D.M. Contemporary Orthodontics, 6th ed.; Elsevier: London, UK, 2019; pp. 290–291, 606. [Google Scholar]
- Bae, S.-M.; Kim, H.-J. Molar Uprighting Using a Newly Designed Segmental Wire: A Case Report. Australas. Orthod. J. 2022, 38, 263–267. [Google Scholar] [CrossRef]
- Piccioni, M.A.R.V.; Campos, E.A.; Saad, J.R.C.; Andrade, M.F.d.; Galvão, M.R.; Rached, A.A. Application of the Finite Element Method in Dentistry. Rev. Sul-Bras. Odontol. 2014, 10, 369–377. [Google Scholar] [CrossRef]
- Poiate, I.A.V.P.; Vasconcellos, A.B.; Mori, M.; Poiate, E., Jr. 2D and 3D Finite Element Analysis of Central Incisor Generated by Computerized Tomography. Comput. Methods Programs Biomed. 2011, 104, 292–299. [Google Scholar] [CrossRef]
- Romeo, D.A.; Burstone, C.J. Tip-Back Mechanics. Am. J. Orthod. 1977, 72, 414–421. [Google Scholar] [CrossRef]
- Romeed, S.A.; Fok, S.L.; Wilson, N.H.F. A Comparison of 2D and 3D Finite Element Analysis of a Restored Tooth. J. Oral Rehabil. 2006, 33, 209–215. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Zhang, J.; Peng, W.; Jiang, X. Biomechanical Investigation of Orthodontic Treatment Planning Based on Orthodontic Force Measurement and Finite Element Method before Implementation: A Case Study. Technol. Health Care 2018, 26, 347–359. [Google Scholar] [CrossRef]
- Ferčec, J.; Glišić, B.; Šćepan, I.; Marković, E.; Stamenković, D.; Anžel, I.; Flašker, J.; Rudolf, R. Determination of Stresses and Forces on the Orthodontic System by Using Numerical Simulation of the Finite Elements Method. Acta Phys. Pol. A 2012, 122, 659–665. [Google Scholar] [CrossRef]
- Abrão, A.F.; Domingos, R.G.; de Paiva, J.B.; Laganá, D.C.; Abrão, J. Photoelastic Analysis of Stress Distribution in Mandibular Second Molar Roots Caused by Several Uprighting Mechanics. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Sander, C.H.; Sander, F.M.; Sander, F.G. The Behaviour of the Periodontal Ligament Is Influencing the Use of New Treatment Tools. J. Oral Rehabil. 2006, 33, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Raveli, T.B.; Raveli, D.B.; de Mathias Almeida, K.C.; Pinto, A.D.S. Molar Uprighting: A Considerable and Safe Decision to Avoid Prosthetic Treatment. Open Dent. J. 2017, 11, 466–475. [Google Scholar] [CrossRef]
- Wu, J.-L.; Liu, Y.-F.; Peng, W.; Dong, H.-Y.; Zhang, J.-X. A Biomechanical Case Study on the Optimal Orthodontic Force on the Maxillary Canine Tooth Based on Finite Element Analysis. J. Zhejiang Univ. Sci. B 2018, 19, 535–546. [Google Scholar] [CrossRef]
- Qian, Y.; Fan, Y.; Liu, Z.; Zhang, M. Numerical Simulation of Tooth Movement in a Therapy Period. Clin. Biomech. 2008, 23 (Suppl. 1), S48–S52. [Google Scholar] [CrossRef]
- Toms, S.R.; Lemons, J.E.; Bartolucci, A.A.; Eberhardt, A.W. Nonlinear Stress-Strain Behavior of Periodontal Ligament under Orthodontic Loading. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 174–179. [Google Scholar] [CrossRef]
- Yamamoto, K.; Morikawa, H.; Satoh, Y.; Nakamura, S. Computational Analysis of Bone Remodeling in Orthodontics. In Computational Biomechanics; Springer: Tokyo, Japan, 1996; pp. 115–134. [Google Scholar]
- Cattaneo, P.M.; Dalstra, M.; Melsen, B. Strains in Periodontal Ligament and Alveolar Bone Associated with Orthodontic Tooth Movement Analyzed by Finite Element. Orthod. Craniofac. Res. 2009, 12, 120–128. [Google Scholar] [CrossRef]
- McCormack, S.W.; Witzel, U.; Watson, P.J.; Fagan, M.J.; Gröning, F. The Biomechanical Function of Periodontal Ligament Fibres in Orthodontic Tooth Movement. PLoS ONE 2014, 9, e102387. [Google Scholar] [CrossRef]
Material | Young’s Modulus (MPa) | Poisson’s Ratio (ν) |
---|---|---|
Bone | 3000 | 0.3 |
PDL | 0.84 | 0.46 |
Teeth (Root/Dentin) | 20,000 | 0.3 |
Teeth (Crown/Enamel) | 70,000 | 0.3 |
Stainless Steel | 200,000 | 0.3 |
Clinical Week | Molar Uprighting Angle (°) | Molar Vertical Extrusion (mm) | Uprighting Moment (N·mm) | Extrusion Force (N) | Second Premolar Intrusion (mm) |
---|---|---|---|---|---|
Week 0 | 0.32 | 0.04 | 14.6 | 0.6 | 0.002 |
Week 2 | 3.9 | 0.49 | 12.6 | 0.52 | 0.009 |
Week 4 | 8.06 | 0.94 | 9.98 | 0.42 | 0.133 |
Week 6 | 12.09 | 1.35 | 7.63 | 0.32 | 0.196 |
Week 8 | 15.89 | 1.68 | 5.6 | 0.24 | 0.262 |
Week 10 | 19.55 | 1.96 | 3.53 | 0.15 | 0.328 |
Week 12 | 21.9 | 2.13 | 2.12 | 0.09 | 0.374 |
Author | Study Type | Molar Angular Correction (°) | Forces Used | Treatment Duration |
---|---|---|---|---|
Present Study | FEA | 21.9° | 0.6 N (~61 g) | 12 Weeks |
Kojima et al., 2007 [13] | FEA | 22° | 0.66 N | - |
Zheng et al., 2024 [15] | FEA | - | 0.5 N | - |
Roig-Vanaclocha et al., 2021 [31] | Clinical Case Series | 24.5° (Mean) | - | 10–12 Weeks |
Musilli et al., 2010 [32] | Clinical Study | 18° | - | 9 Weeks (9.1 Weeks) * |
Bae and Kim, 2022 [37] | Case Report | - | 50 g | 12 Weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlKahlan, L.A.; Bindayel, N.A.; Mallek, A.M.; Bendjaballah, M.Z. Extensive Iterative Finite Element Analysis of Molar Uprighting with the Introduction of a Novel Method for Estimating Clinical Treatment Time. Appl. Sci. 2025, 15, 6463. https://doi.org/10.3390/app15126463
AlKahlan LA, Bindayel NA, Mallek AM, Bendjaballah MZ. Extensive Iterative Finite Element Analysis of Molar Uprighting with the Introduction of a Novel Method for Estimating Clinical Treatment Time. Applied Sciences. 2025; 15(12):6463. https://doi.org/10.3390/app15126463
Chicago/Turabian StyleAlKahlan, Lama A., Naif A. Bindayel, Abdelhafid M. Mallek, and Mohamed Z. Bendjaballah. 2025. "Extensive Iterative Finite Element Analysis of Molar Uprighting with the Introduction of a Novel Method for Estimating Clinical Treatment Time" Applied Sciences 15, no. 12: 6463. https://doi.org/10.3390/app15126463
APA StyleAlKahlan, L. A., Bindayel, N. A., Mallek, A. M., & Bendjaballah, M. Z. (2025). Extensive Iterative Finite Element Analysis of Molar Uprighting with the Introduction of a Novel Method for Estimating Clinical Treatment Time. Applied Sciences, 15(12), 6463. https://doi.org/10.3390/app15126463