Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale
Abstract
:1. Introduction
1.1. Research Background
1.2. Review of Relevant Research Literature
1.2.1. Rutting Behavior of SBDP Investigated Through Experimental Study
1.2.2. Rutting Behavior of SBDP Investigated Through the Finite Element Method
1.2.3. Rutting Behavior of SBDP Investigated Through the Discrete Element Method
2. Materials and Methods
3. Numerical Analysis
3.1. Loading Method of the Wheel Tracking Test
3.2. 3D Discrete–Continuous Coupling Model
3.2.1. Modeling Process
3.2.2. DEM-FEM Coupling Model
3.2.3. Contact Constitutive Model
3.2.4. Mesoscopic Parameters
4. Results and Discussion
4.1. Model Verification
4.2. Coupled Evolution of Rutting and Cracking
4.3. Displacement Distribution During the Virtual Test
4.4. Mechanism of Force Distribution
4.5. Movement Characteristics of Coarse Aggregate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Qian, Z.; Zheng, D.; Zhang, M. Interlaminar thermal effect analysis of steel bridge deck pavement during gussasphalt mixture paving. Int. J. Pavement Eng. 2019, 20, 1323–1335. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, B.; Yu, C.; Wu, J.; Chen, J.; Zhang, L. Experimental evaluation of the shear performance of steel-asphalt interface considering temperature and humidity coupling. Int. J. Adhes. Adhes. 2018, 84, 360–367. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Sun, R. Response analysis of orthotropic steel deck pavement based on interlayer contact bonding condition. Sci. Rep. 2021, 11, 23692. [Google Scholar] [CrossRef]
- Chou, Y.T. Analysis of Permanent Deformations of Flexible Airport Pavements; Technical Report, No. Tech. Rpt. S-77-7 Final Rpt.; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1977. [Google Scholar]
- Paterson, W.D. Road Deterioration and Maintenance Effects: Models for Planning and Management; the TRIS and ITRD database; World Bank: Washington, DC, USA, 1987. [Google Scholar]
- Kaloush, K.; Witczak, M.; Roque, R.; Brown, S.; D’Angelo, J.; Marasteanu, M.; Masad, E. Tertiary flow characteristics of asphalt mixtures. In Proceedings of the Asphalt Paving Technology 2002, Colorado Springs, CO, USA, 18–20 March 2002; pp. 248–280. [Google Scholar]
- Skoglund, O.; Leander, J.; Karoumi, R. Overview of steel bridges containing high strength steel. Int. J. Steel Struct. 2020, 20, 1294–1301. [Google Scholar] [CrossRef]
- Shi, J.; Cong, L. Testing and evaluating the high-temperature rutting development of steel deck asphalt pavement using full-scale accelerated pavement testing. J. Test. Eval. 2023, 51, 1094–1104. [Google Scholar] [CrossRef]
- Jun, Y.; Ling, C.; Haoran, Z.; Juan, C. Circular Road Tracking Test on Steel Bridge Deck Pavement and its Rutting Prediction. In Proceedings of the APT’08, Third International Conference Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Transportation Research Board, Madrid, Spain, 1–3 October 2008. [Google Scholar]
- Huang, W.-K.; Zhang, X.-N.; Rong, H.-L.; Chen, B. Finite element method for predicting rutting depth of steel deck asphalt pavement based on accelerated pavement test. In Proceedings of the 2015 3rd International Conference on Mechanical Engineering and Intelligent Systems, Yinchuan, China, 15–16 August 2015; Atlantis Press: Dordrecht, The Netherlands, 2015; pp. 935–942. [Google Scholar] [CrossRef]
- Ellobody, E. Finite element modelling and design of composite bridges with profiled steel sheeting. Adv. Struct. Eng. 2017, 20, 1406–1430. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Z.; Gong, M.; Bo, W.; Zhang, X.; Xu, C. Investigation of the Rutting Evolution of Double-Layered Heterogeneous Asphalt Pavement on a Steel Bridge Deck under the Coupling of Heavy Load and Variable Temperature. J. Mater. Civ. Eng. 2025, 37, 04025175. [Google Scholar] [CrossRef]
- Luo, S.; Zhong, K.; Qian, Z. Permanent deformation prediction of steel deck pavements with different combinations. J. Tongji Univ. Nat. Sci. 2013, 41, 397–401. [Google Scholar]
- Yang, J.; Tan, L.; Qi, X.; Zhang, C. Investigation on permanent deformation in steel-concrete composite beam bridge deck pavement under temperature-load coupling effect. Front. Mater. 2023, 10, 1284928. [Google Scholar] [CrossRef]
- Cong, L.; Yang, J.; Zhu, H.; Cui, J. A study on rutting prediction of the asphalt pavement for orthotropic steel bridge decks. J. Test. Eval. 2009, 37, 505–509. [Google Scholar] [CrossRef]
- Luo, S.; Lu, Q.; Qian, Z.; Wang, H.; Huang, Y. Laboratory investigation and numerical simulation of the rutting performance of double-layer surfacing structure for steel bridge decks. Constr. Build. Mater. 2017, 144, 178–187. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, Z.; Jiang, S.; Ma, T.; Huang, S.; Chen, F.; Zhang, W. Long-term rutting prediction of gussasphalt steel bridge deck pavement based on comprehensive finite element modelling. Int. J. Pavement Eng. 2024, 25, 2428419. [Google Scholar] [CrossRef]
- Kim, H.; Arraigada, M.; Raab, C.; Partl, M.N. Numerical and experimental analysis for the interlayer behavior of double-layered asphalt pavement specimens. J. Mater. Civ. Eng. 2011, 23, 12–20. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, C.; Yao, K.; Gu, H.Y.; Li, Z.K.; Qiu, Y.J. Influence of bonding conditions on flexible base asphalt pavement under non-uniform vertical loads. Int. J. Pavement Eng. 2021, 22, 1491–1503. [Google Scholar] [CrossRef]
- Lamichhane, R.; Zhang, S.; Zheng, P.; Bahadur, S. Stress Analysis of Hollow Slab Bridge Deck Pavement. Civ. Environ. Eng. Rep. 2022, 18, 589–602. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, W.; Zhao, J.; An, L.; Wang, F.; Du, Z.; Chen, Q. Experimental study of the factors influencing the performance of the bonding interface between epoxy asphalt concrete pavement and a steel bridge deck. Buildings 2022, 12, 477. [Google Scholar] [CrossRef]
- Zheng, X.; Ren, Q.; Xiong, H.; Song, X. An experimental study on a composite bonding structure for steel bridge deck pavements. Adv. Civ. Eng. 2021, 2021, 5685710. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, X.; Ma, C.; Liang, F.; Qi, J.; Chou, Z.; Xu, S. Shear fatigue performance of epoxy resin waterproof adhesive layer on steel bridge deck pavement. Front. Mater. 2021, 7, 618073. [Google Scholar] [CrossRef]
- Zha, X.; Xiao, Q. Shear analysis for asphalt concrete deck pavement of steel bridges. In Advances in Steel Structures (ICASS’99), Proceedings of the Second International Conference on Advances in Steel Structures, Hong Kong, China, 15–17 December 1999; Elsevier: Amsterdam, The Netherlands, 1999; pp. 553–560. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.; Yu, A. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Minh, N.; Cheng, Y.; Thornton, C. Strong force networks in granular mixtures. Granul. Matter 2014, 16, 69–78. [Google Scholar] [CrossRef]
- Gu, X.; Huang, M.; Qian, J. DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 2014, 16, 91–106. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, T.; Lin, Z.; Zhu, H. Effect of aggregate structure on load-carrying capacity and deformation resistance of porous asphalt concrete based on discrete-element modelling. Int. J. Pavement Eng. 2022, 23, 4023–4033. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Wang, S.; Huang, X. Simulation of wheel tracking test for asphalt mixture using discrete element modelling. Road Mater. Pavement Des. 2018, 19, 367–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, T.; Ding, X.; Chen, T.; Huang, X.; Xu, G. Impacts of air-void structures on the rutting tests of asphalt concrete based on discretized emulation. Constr. Build. Mater. 2018, 166, 334–344. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Zhao, Y.; Huang, X. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Mater. Des. 2016, 89, 304–313. [Google Scholar] [CrossRef]
- Zhang, D.; Gu, L.; Zhu, J. Effects of aggregate mesostructure on permanent deformation of asphalt mixture using three-dimensional discrete element modeling. Materials 2019, 12, 3601. [Google Scholar] [CrossRef]
- Zhong, H.; Yu, Z.; Zhang, C.; Lyu, L.; Zhao, L. Dynamic mechanical responses of reinforced concrete pier to debris avalanche impact based on the DEM-FEM coupled method. Int. J. Impact Eng. 2022, 167, 104282. [Google Scholar] [CrossRef]
- Zeng, H.; Lin, Z.; Huang, G.; Yang, X.; Li, Y.; Su, J.; Xu, W. Parameter identification of DEM-FEM coupling model to simulate traction behavior of tire-soil interaction. J. Terramech. 2025, 117, 101012. [Google Scholar] [CrossRef]
- Ge, H.; Quezada, J.C.; Le Houerou, V.; Chazallon, C.; Sha, A. From macro to micro: Investigation of three-dimensional particle-scale responses of asphalt mixtures under non-uniform rolling tire loads via coupled FEM-DEM simulations. Road Mater. Pavement Des. 2025, 1–30. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China and China Communications Press: Beijing, China, 2011; pp. 265–270.
- Chen, J.; Wang, H.; Li, L. Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures. Int. J. Pavement Eng. 2017, 18, 824–836. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; You, W. Microstructural behavior of the low-temperature cracking and self-healing of asphalt mixtures based on the discrete element method. Mater. Struct. 2022, 55, 18. [Google Scholar] [CrossRef]
- Chen, X.; Ai, C.; Du, J.; He, H.; Huang, Y. Effect of gradation segregation on low-temperature crack resistance of asphalt pavement using 3D DEM. Constr. Build. Mater. 2021, 274, 122060. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Q.; Yan, Z. Research on Asphalt Mixture Bending Test and Micromechanical Evolution Based on 2D Discrete-Element Method. J. Mater. Civ. Eng. 2021, 33, 04021179. [Google Scholar] [CrossRef]
- Albayati, A. A review of rutting in asphalt concrete pavement. Open Eng. 2023, 13, 20220463. [Google Scholar] [CrossRef]
- Liu, G.; Ran, G.; Li, Z.; Duan, S.; Su, G.; Yan, C.; Dong, K. An insight into the effect of primary hidden microfissures on mechanical behaviors and failure characteristics of brittle basalt. Theor. Appl. Fract. Mech. 2023, 128, 104138. [Google Scholar] [CrossRef]
- Bai, F.; Yang, X.; Yin, A.; Zeng, G. Modified Cross model for predicting long-term creep behavior of sand asphalt. Constr. Build. Mater. 2014, 65, 43–50. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Xia, G.; Wang, W. Shear mechanism of steel-asphalt interface using three-dimensional discrete-continuous coupling method on the mesoscopic scale. Constr. Build. Mater. 2023, 364, 129977. [Google Scholar] [CrossRef]
- Chang, M.; Huang, P.; Pei, J.; Zhang, J.; Zheng, B. Quantitative analysis on force chain of asphalt mixture under haversine loading. Adv. Mater. Sci. Eng. 2017, 2017, 7128602. [Google Scholar] [CrossRef]
- Chang, M.; Pei, J.; Zhang, J.; Xing, X.; Xu, S.; Xiong, R.; Sun, J. Quantitative distribution characteristics of force chains for asphalt mixtures with three skeleton structures using discrete element method. Granul. Matter 2020, 22, 1–18. [Google Scholar] [CrossRef]
- Xue, B.; Xu, J.; Pei, J.; Zhang, J.; Li, R. Investigation on the micromechanical response of asphalt mixture during permanent deformation based on 3D virtual wheel tracking test. Constr. Build. Mater. 2021, 267, 121031. [Google Scholar] [CrossRef]
- Liu, Y.; You, Z. Discrete-element modeling: Impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures. J. Eng. Mech. 2011, 137, 294–303. [Google Scholar] [CrossRef]
Detection Index | Unit | Test Value | Specification Requirements |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 69 | 60∼80 |
Ductility (15 °C) | cm | >150 | ≥100 |
Softening Point (R&B) | °C | 47.0 | ≥46.0 |
Properties | Sieve Size (mm) | ||
---|---|---|---|
3∼5 | 5∼10 | 10∼15 | |
Apparent relative density | 2.717 | 2.958 | 2.927 |
Bulk density | 2.667 | 2.858 | 2.859 |
Failure Area Ratio (%) | Maximum Rut Depth (mm) | Average Depth (mm) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
0 | 2.733 | 4.355 | 0.827 | 2.638 |
17 | 2.835 | 1.295 | 3.763 | 2.631 |
100 | 3.319 | 3.029 | 2.817 | 3.055 |
Failure Area Ratio (%) | Maximum Rut Depth (mm) | Average Depth (mm) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
0 | 3.178 | 4.800 | 1.272 | 3.083 |
17 | 2.965 | 4.165 | 2.141 | 3.091 |
100 | 5.233 | 4.943 | 4.731 | 4.969 |
T (°C) | Contact Relationship | Linear Parallel Bond Modulus (Pa) | Linear Parallel Bond Stiffness Ratio | Linear Parallel Bond Strength (Pa) | Friction Coefficient |
---|---|---|---|---|---|
30 | Aggregate-inner | 2.0 | 0.6 | ||
Mastic-inner | 2.0 | 1.2 | |||
Aggregate-mastic | 2.0 | 1.2 | |||
Steel–asphalt mixtures interface | 2.0 | 0.8 | |||
45 | Aggregate-inner | 2.0 | 0.6 | ||
Mastic-inner | 2.0 | 0.8 | |||
Aggregate-mastic | 2.0 | 0.8 | |||
Steel–asphalt mixtures interface | 2.0 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, X.; Liu, Y. Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale. Appl. Sci. 2025, 15, 6187. https://doi.org/10.3390/app15116187
Min X, Liu Y. Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale. Applied Sciences. 2025; 15(11):6187. https://doi.org/10.3390/app15116187
Chicago/Turabian StyleMin, Xingchen, and Yun Liu. 2025. "Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale" Applied Sciences 15, no. 11: 6187. https://doi.org/10.3390/app15116187
APA StyleMin, X., & Liu, Y. (2025). Permanent Deformation Mechanism of Steel Bridge Deck Pavement Using Three-Dimensional Discrete–Continuous Coupling Method on the Mesoscopic Scale. Applied Sciences, 15(11), 6187. https://doi.org/10.3390/app15116187