Evaluating the Quality of Light Emitted by Smartphone Displays
Abstract
:1. Introduction
1.1. Everyday Use of Smartphones
1.2. Display Technologies
1.3. Research Objectives
2. Materials and Methods
2.1. The Selected Samples
2.2. The Laboratory Tests
2.2.1. Color Gamut Measurements
2.2.2. R, G, and B Channel Linearity Measurements
2.2.3. Spectral Properties Measurements
2.2.4. Refresh Rate and Flicker Measurements
2.2.5. Spatial Radiation Distribution Measurements
2.2.6. Luminance Distribution, Uniformity, and Static Contrast Measurements
3. Results
3.1. Color Gamut Performance
3.2. Channel Linearity
3.3. Spectral Power Distribution and Blue Light Reduction
3.4. Refresh Rate and Flickering
3.5. Spatial Radiation Distribution
3.6. Luminance Distribution and Its Uniformity
3.7. Static Contrast
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, H.; Wijaya, M.E.; Esmero, B.C. A Systemic Smartphone Usage Pattern Analysis: Focusing on Smartphone Addiction Issue Heejune. Int. J. Multimed. Ubiquitous Eng. 2014, 9, 9–14. [Google Scholar] [CrossRef]
- Stachl, C.; Hilbert, S.; Au, J.Q.; Buschek, D.; De Luca, A.; Bischl, B.; Hussmann, H.; Bühner, M. Personality Traits Predict Smartphone Usage. Eur. J. Personal. 2017, 31, 701–722. [Google Scholar] [CrossRef]
- Dinaryanti, R.F. Indrawati Analysis of Consumer Preferences in Choosing Smartphone Through User Comments on Youtube. Qual.—Access Success 2024, 25, 323–330. [Google Scholar] [CrossRef]
- Chen, H.W.; Lee, J.H.; Lin, B.Y.; Chen, S.; Wu, S.T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.S.; Bong, S.H.; Choi, T.Y.; Kim, J.W. Mental health, smartphone use type, and screen time among adolescents in south korea. Psychol. Res. Behav. Manag. 2021, 14, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, M. Smartphone use patterns and problematic smartphone use among preschool children. PLoS ONE 2021, 16, e0244276. [Google Scholar] [CrossRef]
- Kuss, D.J.; Kanjo, E.; Crook-Rumsey, M.; Kibowski, F.; Wang, G.Y.; Sumich, A. Problematic Mobile Phone Use and Addiction Across Generations: The Roles of Psychopathological Symptoms and Smartphone Use. J. Technol. Behav. Sci. 2018, 3, 141–149. [Google Scholar] [CrossRef]
- Mason, M.C.; Zamparo, G.; Marini, A.; Ameen, N. Glued to your phone? Generation Z’s smartphone addiction and online compulsive buying. Comput. Hum. Behav. 2022, 136, 107404. [Google Scholar] [CrossRef]
- Ting, C.H.; Chen, Y.Y. Smartphone addiction. In Adolescent Addiction (Second Edition): Epidemiology, Assessment, and Treatment; Academic Press: Cambridge, MA, USA, 2020; pp. 215–240. [Google Scholar] [CrossRef]
- Panova, T.; Carbonell, X. Is smartphone addiction really an addiction? J. Behav. Addict. 2018, 7, 252–259. [Google Scholar] [CrossRef]
- James, R.J.E.; Dixon, G.; Dragomir, M.G.; Thirlwell, E.; Hitcham, L. Understanding the construction of ‘behavior’ in smartphone addiction: A scoping review. Addict. Behav. 2023, 137, 107503. [Google Scholar] [CrossRef]
- Heo, J.Y.; Kim, K.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Kim, M.J.; Kim, D.J.; Chang, K.A.J.; Oh, Y.; Yu, B.H.; et al. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. J. Psychiatr. Res. 2017, 87, 61–70. [Google Scholar] [CrossRef]
- Ouyang, X.; Yang, J.; Hong, Z.; Wu, Y.; Xie, Y.; Wang, G. Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomed. Pharmacother. 2020, 130, 110577. [Google Scholar] [CrossRef] [PubMed]
- Höhn, C.; Schmid, S.R.; Plamberger, C.P.; Bothe, K.; Angerer, M.; Gruber, G.; Pletzer, B.; Hoedlmoser, K. Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness. Clocks Sleep 2021, 3, 66–86. [Google Scholar] [CrossRef]
- Hipólito, V.; Coelho, J.M.P. Blue Light and Eye Damage: A Review on the Impact of Digital Device Emissions. Photonics 2023, 10, 560. [Google Scholar] [CrossRef]
- Supronowicz, R.; Fan, J.; Listowski, M.; Watras, A.; Fryc, I. Application of different metrics for describing light color quality of a white LED. Photonics Lett. Pol. 2021, 13, 31–33. [Google Scholar] [CrossRef]
- Vu, T.; Nguyen, Q. Precision optical model of asymmetry emission band of red light emitting diodes and its application in improving the color rendering index of white LEDs. Results Opt. 2025, 21, 100825. [Google Scholar] [CrossRef]
- Schadt, M. Milestone in the history of field-effect liquid crystal displays and materials. Jpn. J. Appl. Phys. 2009, 48, 03B001. [Google Scholar] [CrossRef]
- Lee, Z.Y.; Pai, C.C. Operation analysis and performance assessment for TFT-LCD manufacturers using improved DEA. Expert Syst. Appl. 2011, 38, 4014–4024. [Google Scholar] [CrossRef]
- Schadt, M. Nematic liquid crystals and twisted-nematic LCDs. Liq. Cryst. 2015, 42, 646–652. [Google Scholar] [CrossRef]
- Cheng, W.C.; Pedram, M. Power minimization in a backlit TFT-LCD display by concurrent brightness and contrast scaling. IEEE Trans. Consum. Electron. 2004, 50, 25–32. [Google Scholar] [CrossRef]
- Alberts, I.L.; Barratt, D.S.; Ray, A.K. Hollow cathode effect in cold cathode fluorescent lamps: A review. IEEE/OSA J. Disp. Technol. 2010, 6, 52–59. [Google Scholar] [CrossRef]
- Li, J.; Yin, Y.; Meng, H. Research progress of color photoresists for TFT-LCD. Dyes Pigments 2024, 225, 112094. [Google Scholar] [CrossRef]
- Hong, H.; Shin, H.; Chung, I. In-plane switching technology for liquid crystal display television. IEEE/OSA J. Disp. Technol. 2007, 3, 361–370. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, H.; Ji, L.; Yang, T.; Meng, Q.; Li, Y.; Li, B.; Zang, Y.; Chen, J.; Huang, Y.; et al. The elimination of stressed induced light leakage for in-plane-switching LCD. Sci. Rep. 2022, 12, 3340. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, W.; Namgoong, J.W.; Kim, T.M.; Kim, J.P. Synthesis and characterization of novel triazatetrabenzcorrole dyes for LCD color filter and black matrix. Dyes Pigments 2013, 99, 357–365. [Google Scholar] [CrossRef]
- Chwang, A.B.; Hack, M.; Brown, J.J. Flexible OLED display development: Strategy and status. J. Soc. Inf. Disp. 2005, 13, 481. [Google Scholar] [CrossRef]
- Qiu, J.; Jin, C.; Lin, Y.; Gao, Y.; Tsou, C. Effects of display screen type on perception and visual performance: Does AMOLED screen perform better than LCD screen? In Proceedings of the International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014), Shenyang, China, 29–31 July 2015; pp. 1087–1090. [Google Scholar] [CrossRef]
- Haila, T.A.; Kunst, K.; Khanh, T.Q.; Wallis, T.S.A. Recent consumer OLED monitors can be suitable for vision science. J. Vis. 2025, 25, 11. [Google Scholar] [CrossRef]
- Khazanchi, A.; Kanwar, A.; Saluja, L.; Damra, A.; Damara, V. OLED: A New Display Technology. Int. J. Eng. Comput. Sci. 2012, 1, 75–84. [Google Scholar]
- Chen, L.; Gu, H.; Jiao, S.; Liu, S. Optical modeling and analysis of pixel organic light-emitting diode using a mixed-level algorithm considering light leakage effects. Thin Solid Films 2023, 769, 139741. [Google Scholar] [CrossRef]
- Giannini, S.; Di Virgilio, L.; Bardini, M.; Hausch, J.; Geuchies, J.J.; Zheng, W.; Volpi, M.; Elsner, J.; Broch, K.; Geerts, Y.H.; et al. Transiently delocalized states enhance hole mobility in organic molecular semiconductors. Nat. Mater. 2023, 22, 1361–1369. [Google Scholar] [CrossRef]
- Fernández, M.R.; Casanova, E.Z.; Alonso, I.G. Review of display technologies focusing on power consumption. Sustainability 2015, 7, 10854–10875. [Google Scholar] [CrossRef]
- Wu, T.; Sher, C.W.; Lin, Y.; Lee, C.F.; Liang, S.; Lu, Y.; Chen, S.W.H.; Guo, W.; Kuo, H.C.; Chen, Z. Mini-LED and Micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lan, Y.F.; Wu, S.T. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Disp. 2021, 29, 446–465. [Google Scholar] [CrossRef]
- Rjoub, A.; Tarawneh, B.; Alghsoon, R. Active matrix organic light emitting diode displays (AMOLED) new pixel design. Microelectron. Eng. 2019, 212, 42–52. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, S.-T. OLED versus LCD: Who wins? Opt. Photonics News 2015, 2015, 19–21. [Google Scholar]
- Bagher, A.M. Comparison of LED and OLED. Sch. J. Eng. Technol. 2016, 4, 206–210. [Google Scholar]
- Chen, Z.; Li, H.; Yuan, C.; Gao, P.; Su, Q.; Chen, S. Color Revolution: Prospects and Challenges of Quantum-Dot Light-Emitting Diode Display Technologies. Small Methods 2024, 8, e2300359. [Google Scholar] [CrossRef]
- Smith, E.; Heckaman, R.L.; Lang, K.; Penczek, J.; Bergquist, J. Measuring the color capability of modern display systems. J. Soc. Inf. Disp. 2020, 28, 548–556. [Google Scholar] [CrossRef]
- Miller, N.J.; Leon, F.A.; Tan, J.; Irvin, L. Flicker: A review of temporal light modulation stimulus, responses, and measures. Light. Res. Technol. 2022, 55, 5–35. [Google Scholar] [CrossRef]
- Skarżyński, K.; Żagan, W.; Krajewski, K. LED luminaires: Many Chips—Many Photometric and Lighting ng Simulation Issues to Solve Simulation Issues to Solve. Energies 2021, 14, 4646. [Google Scholar] [CrossRef]
- Słomiński, S. Typical Causes of Errors during Measuring Luminance Distributions in Relation to Glare Calculations. In Proceedings of the 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), Trebic, Czech Republic, 18–20 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wong, N.A.; Bahmani, H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon 2022, 8, e10282. [Google Scholar] [CrossRef]
- Hipólito, V.; Coelho, J.M.P. Blue Light of the Digital Era: A Comparative Study of Devices. Photonics 2024, 11, 93. [Google Scholar] [CrossRef]
- de Toledo, L.H.S.; Moraes, M.N.; de Oliveira Poletini, M.; Neto, J.C.; Baron, J.; Mota, T. Modeling the influence of nighttime light on melatonin suppression in humans: Milestones and perspectives. J. Photochem. Photobiol. 2023, 16, 100199. [Google Scholar] [CrossRef]
- Wiśniewski, A. Tętnienie światła wytwarzanego przez lampy LED—Zamienniki żarówek tradycyjnych i halogenowych. Prz. Elektrotechniczny 2017, 93, 63–66. [Google Scholar] [CrossRef]
- Chiu, H.P.; Liu, C.H. The effects of three blue light filter conditions for smartphones on visual fatigue and visual performance. Hum. Factors Ergon. Manuf. 2020, 30, 83–90. [Google Scholar] [CrossRef]
- Senyer, N.; Durmus, D. An AI-driven framework for perceived display spectra: The effects of dimming, observer age, and viewing distance. Displays 2025, 88, 103024. [Google Scholar] [CrossRef]
- Banerjee, S.; Singh, P.; Purkayastha, P.; Kumar Ghosh, S. Evolution of Organic Light Emitting Diode (OLED) Materials and their Impact on Display Technology. Chem.—Asian J. 2024, 20, e202401291. [Google Scholar] [CrossRef]
- Moyano, D.B.; Sola, Y.; González-Lezcano, R.A. Blue-Light levels emitted from portable electronic devices compared to sunlight. Energies 2020, 13, 4276. [Google Scholar] [CrossRef]
- Tähkämö, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef]
- Silvani, M.I.; Werder, R.; Perret, C. The influence of blue light on sleep, performance and wellbeing in young adults: A systematic review. Front. Physiol. 2022, 13, 943108. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Chang, Y.Y.; Yang, T.H.; Chung, T.Y.; Chen, C.C.; Lee, T.X.; Li, D.R.; Lu, C.Y.; Ting, Z.Y.; Glorieux, B.; et al. Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. Drug Saf. 2014, 1, 19. [Google Scholar] [CrossRef]
- Zhao, N.; Li, Z.; Qin, L.; Cui, Z.; Sun, Z.; Cheng, Z.; Jiang, C.; Wang, S.; Zhao, T.; Liao, Y.; et al. Lifetime measurement and aging mechanism analysis of OLED subpixels. Displays 2022, 75, 102326. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.-C.; Zeng, G.; Zhang, D.W.; Lu, H.-L. Integration Technology of Micro-LED for Next-Generation Display. Research 2023, 6, 47. [Google Scholar] [CrossRef] [PubMed]
Sample | Release Date | Model | Display Type | Size | Ratio | Length (px) | Width (px) | PPI | Frequency (Hz) | Color Depth |
---|---|---|---|---|---|---|---|---|---|---|
1 | April 2024 | Samsung Galaxy M15 | Super AMOLED | 6.5″ | 19.5:9 | 2340 | 1080 | 396 | 90 | 24 bit |
2 | March 2023 | Samsung Galaxy A34 | Super AMOLED | 6.6″ | 19.5:9 | 2340 | 1080 | 390 | 120 | 24 bit |
3 | October 2020 | Samsung Galaxy S20 FE | Super AMOLED | 6.5″ | 20:9 | 2400 | 1080 | 407 | 120 | 24 bit |
4 | December 2019 | Samsung Galaxy A71 | Super AMOLED+ | 6.7″ | 20:9 | 2400 | 1080 | 393 | 60 | 24 bit |
5 | April 2019 | Samsung Galaxy A40 | Super AMOLED | 5.9″ | 19.5:9 | 2340 | 1080 | 437 | 60 | 24 bit |
6 | April 2017 | LG G6 | IPS LCD | 5.7″ | 18:9 | 2880 | 1440 | 564 | 60 | 24 bit |
7 | March 2017 | Samsung Galaxy S8 | Super AMOLED | 5.8″ | 18.5:9 | 2960 | 1440 | 570 | 60 | 24 bit |
8 | December 2014 | Samsung Galaxy A5 | Super AMOLED | 5.0″ | 16:9 | 1280 | 720 | 294 | No data | 24 bit |
9 | February 2014 | Samsung Galaxy Grand Neo | TFT LCD | 5.0″ | 15:9 | 800 | 480 | 186 | No data | 24 bit |
Sample | Red | Green | Blue | sRGB Filling (%) | Shift | |||
---|---|---|---|---|---|---|---|---|
x | y | x | y | x | y | |||
1 | 0.6666 | 0.3333 | 0.2530 | 0.7046 | 0.1414 | 0.0433 | 140.5 | G |
2 | 0.6816 | 0.3184 | 0.2561 | 0.7033 | 0.1365 | 0.0458 | 145.4 | R, G |
3 | 0.6667 | 0.3331 | 0.2430 | 0.7179 | 0.1420 | 0.0423 | 145.1 | R, G |
4 | 0.6877 | 0.3119 | 0.2478 | 0.7093 | 0.1404 | 0.0505 | 148.4 | R, G |
5 | 0.6646 | 0.3349 | 0.2351 | 0.7145 | 0.1420 | 0.0423 | 144.6 | R, G |
6 | 0.6619 | 0.3137 | 0.2682 | 0.6438 | 0.1500 | 0.0575 | 120.4 | R, G |
7 | 0.6836 | 0.3161 | 0.2326 | 0.7170 | 0.1415 | 0.0485 | 150.8 | R, G |
8 | 0.6691 | 0.3307 | 0.2403 | 0.7150 | 0.1412 | 0.0448 | 145.2 | R, G |
9 | 0.5922 | 0.3378 | 0.3321 | 0.5746 | 0.1510 | 0.1077 | 73.3 | R, B |
Sample | CCT (K) | ||
---|---|---|---|
Without Internal Filter | With Internal Filter | With Dedicated App | |
1 | 7108 | 5616 | 4141 |
2 | 7203 | 6194 | 4493 |
3 | 6846 | 4604 | 4084 |
4 | 6762 | 5390 | 3937 |
5 | 6802 | 5673 | 3808 |
6 | 7762 | 4953 | 5151 |
7 | 6811 | 4202 | 3381 |
8 | 6850 | - | 3811 |
9 | 7841 | - | 4903 |
Sample | Flicker Percent (%) | Frequency (Hz) | ||
---|---|---|---|---|
Energy Saving Mode | Normal Mode | Energy Saving Mode | Normal Mode | |
1 | 4.3% | 3.3% | 60.0 | 90.0 |
2 | 22.3% | 21.2% | 60.0 | 120.0 |
3 | 6.3% | 5.1% | 60.3 | 119.8 |
4 | 4.5% | 4.4% | 60.1 | 60.1 |
5 | 3.5% | 3.0% | 60.1 | 60.1 |
6 | 3.0% | 2.7% | 60.6 | 60.7 |
7 | 2.7% | 2.9% | 60.0 | 60.0 |
8 | 4.4% | 2.9% | 60.0 | 60.0 |
9 | 4.3% | 2.1% | 60.0 | 60.0 |
Sample | Half Peak Divergence (°) | ||
---|---|---|---|
C0 | C90 | Mean | |
1 | 78 | 75 | 77 |
2 | 73 | 75 | 74 |
3 | 73 | 73 | 73 |
4 | 73 | 73 | 73 |
5 | 70 | 74 | 72 |
6 | 72 | 70 | 71 |
7 | 66 | 69 | 68 |
8 | 48 | 54 | 51 |
9 | 53 | 47 | 50 |
Sample | Red | Green | Blue | White | ||||
---|---|---|---|---|---|---|---|---|
1 | 0.85 | 122.6 | 0.91 | 298.7 | 0.87 | 23.2 | 0.90 | 352.6 |
2 | 0.84 | 122.3 | 0.83 | 405.7 | 0.84 | 31.9 | 0.84 | 414.1 |
3 | 0.85 | 139.2 | 0.84 | 354.5 | 0.82 | 22.4 | 0.90 | 353.3 |
4 | 0.90 | 121.5 | 0.88 | 358.0 | 0.83 | 29.4 | 0.92 | 356.0 |
5 | 0.87 | 139.6 | 0.86 | 337.1 | 0.85 | 22.5 | 0.82 | 352.1 |
6 | 0.80 | 68.3 | 0.78 | 274.1 | 0.80 | 24.1 | 0.80 | 437.0 |
7 | 0.73 | 130.5 | 0.78 | 347.6 | 0.75 | 27.7 | 0.80 | 325.1 |
8 | 0.83 | 109.0 | 0.84 | 284.1 | 0.81 | 19.4 | 0.84 | 292.9 |
9 | 0.73 | 70.9 | 0.74 | 267.7 | 0.74 | 56.2 | 0.75 | 396.2 |
Sample | Left Side Test | Right Side Test | Static Contrast | ||||
---|---|---|---|---|---|---|---|
1 | 413.6 | 0.813 | 431.0 | 0.874 | 422.3 | 0.844 | 500:1 |
2 | 517.5 | 1.065 | 538.1 | 1.206 | 527.8 | 1.136 | 465:1 |
3 | 460.9 | 0.890 | 486.1 | 0.920 | 473.5 | 0.905 | 523:1 |
4 | 448.9 | 0.820 | 488.0 | 0.955 | 468.5 | 0.887 | 528:1 |
5 | 431.3 | 0.851 | 480.0 | 0.961 | 455.7 | 0.906 | 503:1 |
6 | 367.7 | 1.081 | 377.1 | 1.041 | 372.4 | 1.061 | 351:1 |
7 | 425.3 | 0.888 | 462.7 | 0.888 | 444.0 | 0.888 | 500:1 |
8 | 381.0 | 0.815 | 361.6 | 0.755 | 371.3 | 0.785 | 473:1 |
9 | 393.4 | 1.272 | 406.9 | 1.286 | 400.2 | 1.279 | 313:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piechota, N.; Skarżyński, K.; Kubiak, K. Evaluating the Quality of Light Emitted by Smartphone Displays. Appl. Sci. 2025, 15, 6119. https://doi.org/10.3390/app15116119
Piechota N, Skarżyński K, Kubiak K. Evaluating the Quality of Light Emitted by Smartphone Displays. Applied Sciences. 2025; 15(11):6119. https://doi.org/10.3390/app15116119
Chicago/Turabian StylePiechota, Nina, Krzysztof Skarżyński, and Kamil Kubiak. 2025. "Evaluating the Quality of Light Emitted by Smartphone Displays" Applied Sciences 15, no. 11: 6119. https://doi.org/10.3390/app15116119
APA StylePiechota, N., Skarżyński, K., & Kubiak, K. (2025). Evaluating the Quality of Light Emitted by Smartphone Displays. Applied Sciences, 15(11), 6119. https://doi.org/10.3390/app15116119