Physico-Chemical, Sensory, and Nutritional Properties of Shortbread Cookies Enriched with Agaricus bisporus and Pleurotus ostreatus Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Powder Preparation
2.2. Making the Shortbread Cookies
2.3. Basic Composition of Mushroom Powders, Wheat Flour and Shortbread Cookies
2.4. Mineral Composition of Mushroom Powders, Flour and Shortbread Cookies
2.5. Colour Measurement
2.6. Functional Properties of Mushroom Powder, Base Flour and Blended Flour
2.7. Basic Properties of Cookies
2.8. Cookies Texture
2.9. Total Phenolic Content (TPC) and Antioxidant Properties
2.9.1. Extraction Procedure
2.9.2. Total Phenolic Content (TPC)
2.9.3. Antioxidant Activity
2.10. Dry Weight
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Basic Composition of Wheat Flour, Mushroom Powders, and Shortbread Cookies
3.2. Mineral Composition
3.3. Colour Measurements
3.4. Functional Properties of Mushroom Powder, Wheat Flour, and Blended Flours
3.5. Basic Properties of Cookies
3.6. Total Phenolic Content (TPC) and Antioxidant Properties
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadowska-Rociek, A.; Cieślik, E. Carbohydrate-Based Fat Mimetics Can Affect the Levels of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Shortbread Biscuits. Plant Foods Hum. Nutr. 2019, 74, 216–222. [Google Scholar] [CrossRef]
- Production and Distribution of Confectionery. Bittersweet Prospects for the Industr (in Polish: ”Produkcja i Dystrybucja Słodyczy. Słodko-Gorzkie Perspektywy Branży). Available online: https://www.pekao.com.pl/dam/jcr:a82e0025-8cf7-4726-bbc9-c16caa35cc53/Produkcja%20i%20dystrybucja%20s%C5%82odyczy_kwiecien2023.pdf (accessed on 19 April 2023).
- Kruszewski, B.; Sujka, K. The influence of addition of beetroot pomace on shortbread cookies quality (in Polish: Wpływ dodatku wytłoków z buraka ćwikłowego na wybrane cechy ciastek kruchych). Prz. Zboż. Młyn. 2022, 4, 26–31. [Google Scholar]
- Pareyt, B.; Wilderjans, E.; Goesaert, H.; Brijs, K.; Delcour, J.A. The Role of Gluten in a Sugar-Snap Cookie System: A Model Approach Based on Gluten–Starch Blends. J. Cereal Sci. 2008, 48, 863–869. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, L.; Qiu, J.; Li, Z.; Wang, L. Milling of Wheat Bran: Influence on Digestibility, Hydrolysis and Nutritional Properties of Bran Protein during in Vitro Digestion. Food Chem. 2023, 404, 134559. [Google Scholar] [CrossRef]
- Rathore, H.; Sehwag, S.; Prasad, S.; Sharma, S. Technological, Nutritional, Functional and Sensorial Attributes of the Cookies Fortified with Calocybe Indica Mushroom. J. Food Meas. Charact. 2019, 13, 976–987. [Google Scholar] [CrossRef]
- Nkurikiye, E.; Pulivarthi, M.K.; Bhatt, A.; Siliveru, K.; Li, Y. Bulk and Flow Characteristics of Pulse Flours: A Comparative Study of Yellow Pea, Lentil, and Chickpea Flours of Varying Particle Sizes. J. Food Eng. 2023, 357, 111647. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and Storability of Cookies Fortified at the Industrial Scale with up to 75% of Apple Pomace Flour Produced by Dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef]
- Verhagen, H.; Vos, E.; Francl, S.; Heinonen, M.; Van Loveren, H. Status of Nutrition and Health Claims in Europe. Arch. Biochem. Biophys. 2010, 501, 6–15. [Google Scholar] [CrossRef]
- Duarte, P.; Teixeira, M.; Costa E Silva, S. Healthy Eating as a Trend: Consumers’ Perceptions towards Products with Nutrition and Health Claims. RBGN 2021, 23, 405–421. [Google Scholar] [CrossRef]
- Siwulski, M.; Niedzielski, P.; Budka, A.; Budzyńska, S.; Kuczyńska-Kippen, N.; Kalač, P.; Sobieralski, K.; Mleczek, M. Patterns of Changes in the Mineral Composition of Agaricus Bisporus Cultivated in Poland between 1977 and 2020. J. Food Compos. Anal. 2022, 112, 104660. [Google Scholar] [CrossRef]
- Oyedele, O.A.; Adeosun, M.V.; Koyenikan, O.O. Low Cost Production of Mushroom Using Agricultural Waste in a Controlled Environment for Economic Advancement. Int. J. Waste Resour. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental Characteristics of Mushroom Species Cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Sławińska, A.; Sołowiej, B.G.; Radzki, W.; Fornal, E. Wheat Bread Supplemented with Agaricus Bisporus Powder: Effect on Bioactive Substances Content and Technological Quality. Foods 2022, 11, 3786. [Google Scholar] [CrossRef] [PubMed]
- Radzki, W.; Slawinska, A.; Jablonska-Rys, E.; Gustaw, W. Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland. Int. J. Med. Mushr. 2014, 16, 65–75. [Google Scholar] [CrossRef]
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Rzymowska, J.; Topolska, J.; Sławińska, A.; Michalak-Majewska, M.; Zalewska-Korona, M.; Kuczumow, A. Effect of Processing on the Content and Biological Activity of Polysaccharides from Pleurotus Ostreatus Mushroom. LWT—Food Sci. Techol. 2016, 66, 27–33. [Google Scholar] [CrossRef]
- Ishara, J.R.; Sila, D.N.; Kenji, G.M.; Buzera, A.K. Nutritional and Functional Properties of Mushroom (Agaricus Bisporus & Pleurotus Ostreatus) and Their Blends with Maize Flour. AJFST 2018, 6, 33–41. [Google Scholar] [CrossRef]
- Carrasco-González, J.A.; Serna-Saldívar, S.O.; Gutiérrez-Uribe, J.A. Nutritional Composition and Nutraceutical Properties of the Pleurotus Fruiting Bodies: Potential Use as Food Ingredient. J. Food Compos. Anal. 2017, 58, 69–81. [Google Scholar] [CrossRef]
- Wong, K.M.; Decker, E.A.; Autio, W.R.; Toong, K.; DiStefano, G.; Kinchla, A.J. Utilizing Mushrooms to Reduce Overall Sodium in Taco Filling Using Physical and Sensory Evaluation. J. Food Sci. 2017, 82, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Reduction of Salt and Fat in Frankfurter Sausages by Addition of Agaricus Bisporus and Pleurotus Ostreatus Flour. Foods 2020, 9, 760. [Google Scholar] [CrossRef]
- Stoffel, F.; Santana, W.D.O.; Fontana, R.C.; Camassola, M. Use of Pleurotus Albidus Mycoprotein Flour to Produce Cookies: Evaluation of Nutritional Enrichment and Biological Activity. Innov. Food Sci. Emerg. 2021, 68, 102642. [Google Scholar] [CrossRef]
- Chen, C.; Han, Y.; Li, S.; Wang, R.; Tao, C. Nutritional, Antioxidant, and Quality Characteristics of Novel Cookies Enriched with Mushroom (Cordyceps militaris) Flour. CyTA—J. Food 2021, 19, 137–145. [Google Scholar] [CrossRef]
- Owheruo, J.O.; Edo, G.I.; Oluwajuyitan, D.T.; Faturoti, A.O.; Martins, I.E.; Akpoghelie, P.O.; Agbo, J.J. Quality Evaluation of Value-Added Nutritious Biscuit with High Antidiabetic Properties from Blends of Wheat Flour and Oyster Mushroom. Food Chem. Adv. 2023, 3, 100375. [Google Scholar] [CrossRef]
- Tu, J.; Brennan, M.A.; Hui, X.; Wang, R.; Peressini, D.; Bai, W.; Cheng, P.; Brennan, C.S. Utilisation of Dried Shiitake, Black Ear and Silver Ear Mushrooms into Sorghum Biscuits Manipulates the Predictive Glycaemic Response in Relation to Variations in Biscuit Physical Characteristics. Int. J. Food Sci. Technol. 2022, 57, 2715–2728. [Google Scholar] [CrossRef]
- Pelaes Vital, A.C.; Goto, P.A.; Hanai, L.N.; Gomes-da-Costa, S.M.; De Abreu Filho, B.A.; Nakamura, C.V.; Matumoto-Pintro, P.T. Microbiological, Functional and Rheological Properties of Low Fat Yogurt Supplemented with Pleurotus Ostreatus Aqueous Extract. LWT—Food Sci. Techol. 2015, 64, 1028–1035. [Google Scholar] [CrossRef]
- Radzki, W.; Skrzypczak, K.; Sołowiej, B.; Jabłońska-Ryś, E.; Gustaw, W. Properties of Yogurts Enriched with Crude Polysaccharides Extracted from Pleurotus Ostreatus Cultivated Mushroom. Foods 2023, 12, 4033. [Google Scholar] [CrossRef]
- Ng, S.H.; Robert, S.D.; Wan Ahmad, W.A.N.; Wan Ishak, W.R. Incorporation of Dietary Fibre-Rich Oyster Mushroom (Pleurotus Sajor-Caju) Powder Improves Postprandial Glycaemic Response by Interfering with Starch Granule Structure and Starch Digestibility of Biscuit. Food Chem. 2017, 227, 358–368. [Google Scholar] [CrossRef]
- Cornelia, M.; Chandra, J. Utilization of White Oyster Mushroom Powder (Pleurotus Ostreatus (Jacq.) P. Kumm.) in the Making of Biscuit as Emergency Food Product. EurAsian J. BioSciences 2019, 13, 1859–1866. [Google Scholar]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of Mushroom Powder to Pasta Enhances the Antioxidant Content and Modulates the Predictive Glycaemic Response of Pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef]
- Gaglio, R.; Guarcello, R.; Venturella, G.; Palazzolo, E.; Francesca, N.; Moschetti, G.; Settanni, L.; Saporita, P.; Gargano, M.L. Microbiological, Chemical and Sensory Aspects of Bread Supplemented with Different Percentages of the Culinary Mushroom Pleurotus Eryngii in Powder Form. Int. J. Food Sci. Technol. 2019, 54, 1197–1205. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M.; Asadi, F.; Najafi, A. Improvement of Quality Attributes of Sponge Cake Using Infrared Dried Button Mushroom. J. Food Sci. Technol. 2016, 53, 1418–1423. [Google Scholar] [CrossRef]
- Proserpio, C.; Lavelli, V.; Gallotti, F.; Laureati, M.; Pagliarini, E. Effect of Vitamin D2 Fortification Using Pleurotus Ostreatus in a Whole-Grain Cereal Product on Child Acceptability. Nutrients 2019, 11, 2441. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Lee, W.Y. Quality and Antioxidant Properties of Functional Rice Muffins Enriched with Shiitake Mushroom and Carrot Pomace. Int. J. Food Sci. Technol. 2019, 54, 2321–2328. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia dla Populacji Polski i Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Warszawa, Poland, 2020; ISBN 978-83-65870-28-5. [Google Scholar]
- Szponar, L.; Sekuła, W.; Rychlik, E.; Ołtarzewski, M.; Figurska, K. Badania Indywidualnego Spożycia Żywności i Stanu Odżywienia w Gospodarstwach Domowych, 1st ed.; Instytut Żywności i Żywienia: Warszawa, Poland, 2003; ISBN 83-86060-60-3. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Tolerable Upper Intake Level of Calcium. EFSA J. 2012, 10, 2814. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Manganese. EFSA J. 2013, 11, 3419. [Google Scholar] [CrossRef]
- Kalač, P. A Review of Chemical Composition and Nutritional Value of Wild-growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J.; Borovička, J. Macro and Trace Mineral Constituents and Radionuclides in Mushrooms: Health Benefits and Risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). OJ 2023, L 119, 103–157.
- American Association of Cereal Chemistry (AACC). AACC Approved Methods of Analysis, 11th Ed. Available online: https://www.cerealsgrains.org/resources/methods/Pages/default.aspx (accessed on 1 October 2023).
- European Commision (EC). Consolidated Text: Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 (Text with EEA Relevance). OJ 2011, L 304, 18. [Google Scholar]
- Kasprzyk, A.; Kilar, J.; Chwil, S.; Rudaś, M. Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus Scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals 2020, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Jiménez, A.; Guerra-Hernández, E.; García-Villanova, B. Browning Indicators in Bread. J. Agric. Food Chem. 2000, 48, 4176–4181. [Google Scholar] [CrossRef] [PubMed]
- Carini, E.; Vittadini, E.; Curti, E.; Antoniazzi, F.; Viazzani, P. Effect of Different Mixers on Physicochemical Properties and Water Status of Extruded and Laminated Fresh Pasta. Food Chem. 2010, 122, 462–469. [Google Scholar] [CrossRef]
- Okezie, B.O.; Bello, A.B. Physicochemical and Functional Properties of Winged Bean Flour and Isolate Compared with Soy Isolate. J. Food Sci. 1988, 53, 450–454. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary Fibres in Pulse Seeds and Fractions: Characterization, Functional Attributes, and Applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, H.; Peng, Z.; Luo, Q.; Ming, J.; Zhao, G. Characterization of Stipe and Cap Powders of Mushroom (Lentinus Edodes) Prepared by Different Grinding Methods. J. Food Eng. 2012, 109, 406–413. [Google Scholar] [CrossRef]
- Tan, E.-S.; Ying-Yuan, N.; Gan, C.-Y. A Comparative Study of Physicochemical Characteristics and Functionalities of Pinto Bean Protein Isolate (PBPI) against the Soybean Protein Isolate (SPI) after the Extraction Optimisation. Food Chem. 2014, 152, 447–455. [Google Scholar] [CrossRef]
- Öztürk, S.; Cerit, İ.; Mutlu, S.; Demirkol, O. Enrichment of Cookies with Glutathione by Inactive Yeast Cells ( Saccharomyces Cerevisiae ): Physicochemical and Functional Properties. J. Cereal Sci. 2017, 78, 19–24. [Google Scholar] [CrossRef]
- Dubost, N.; Ou, B.; Beelman, R. Quantification of Polyphenols and Ergothioneine in Cultivated Mushrooms and Correlation to Total Antioxidant Capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical. Bio Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Singh, S.; Kumari, D. Evaluation of Functional Properties of Composite Flours and Sensorial Attributes of Composite Flour Biscuits. J. Food Sci. Technol. 2015, 52, 3681–3688. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1047/2012 Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. OJ 2006, L 404, 1–31.
- Bernaś, E.; Jaworska, G.; Lisiewska, Z. Edible Mushrooms as a Source of Valuable Nutritive Constituents. Acta Sci. Pol.—Technol. Aliment. 2006, 5, 5–20. [Google Scholar]
- Diamantopoulou, P.; Fourtaka, K.; Melanouri, E.M.; Dedousi, M.; Diamantis, I.; Gardeli, C.; Papanikolaou, S. Examining the Impact of Substrate Composition on the Biochemical Properties and Antioxidant Activity of Pleurotus and Agaricus Mushrooms. Fermentation 2023, 9, 689. [Google Scholar] [CrossRef]
- Sławińska, A.; Jabłońska-Ryś, E.; Stachniuk, A. High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. Food Anal. Methods 2021, 14, 209–216. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef]
- Cheung, P.C.K. Mini-Review on Edible Mushrooms as Source of Dietary Fiber: Preparation and Health Benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Jablonský, I.; Sluková, M.; Čopíková, J. Mushrooms of Genus Pleurotus as a Source of Dietary Fibres and Glucans for Food Supplements. Czech J. Food Sci. 2008, 26, 441–446. [Google Scholar] [CrossRef]
- Nile, S.; Park, S.W. Total, Soluble, and Insoluble Dietary Fibre Contents of Wild Growing Edible Mushrooms. Chech J. Food Sci. 2014, 32, 302–307. [Google Scholar] [CrossRef]
- Shbeeb, D.A.; Farahat, M.F.; Ismail, H.M. Macronutrients Analysis of Fresh and Canned Agaricus Bisporus and Pleurotus Ostreatus Mushroom Species Sold in Alexandria Markets, Egypt. Prog. Nutr. 2020, 21, 203–209. [Google Scholar] [CrossRef]
- Kirbağ, S.; Akyüz, M. Nutritive Value of Edible Wild and Cultured Mushrooms. Turk. J. Biol. 2010, 34, 97–102. [Google Scholar] [CrossRef]
- Ogidi, C.O.; Ogunlade, A.O.; Bodunde, R.S.; Aladejana, O.M. Evaluation of Nutrient Contents and Antioxidant Activity of Wheat Cookies Fortified with Mushroom (Termitomyces robustus) and Edible Insects. J. Culin. Sci. Technol. 2023, 1–19. [Google Scholar] [CrossRef]
- Van Toan, N.; Thu, L.N.M. Preparation and Improved Quality Production of Flour and the Made Biscuits from Shitake Mushroom (Lentinus edodes). J. Nutr. Diet. 2018, 1, 1–9. [Google Scholar]
- Shams, R.; Singh, J.; Dash, K.K.; Dar, A.H.; Pandiselvam, R. Utilization of Button Mushroom ( Agaricus Bisporus ) Powder to Improve the Physiochemical and Functional Properties of Cookies. Sustain. Food Technol. 2023, 1, 306–318. [Google Scholar] [CrossRef]
- Sulieman, A.; Zhu, K.-X.; Peng, W.; Shoaib, M.; Hassan, H.; Zhou, H.-M. Compositional, Functional and Pasting Properties of Composite Flour Fortified with Button Mushroom (Agaricus bisporus) Powder and Inulin. J. Food Nutr. Res. 2017, 5, 614–621. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Fasogbon, B.M. Nutritional and Functional Properties of Maize-Oyster Mushroom (Zea mays-Pleurotus ostreatus) Based Composite Flour and Its Storage Stability. Open Agric. 2020, 5, 40–49. [Google Scholar] [CrossRef]
- Falandysz, J.; Frankowska, A.; Jarzynska, G.; Dryzałowska, A.; Kojta, A.; Zhang, D. Survey on Composition and Bioconcentration Potential of 12 Metallic Elements in King Bolete (Boletus Edulis) Mushroom That Emerged at 11 Spatially Distant Sites. J. Environ. Sci. Health B 2011, 46, 231–246. [Google Scholar] [CrossRef]
- Wickramasinghe, M.A.; Nadeeshani, H.; Sewwandi, S.M.; Rathnayake, I.; Kananke, T.C.; Liyanage, R. Comparison of Nutritional Composition, Bioactivities, and FTIR- ATR Microstructural Properties of Commercially Grown Four Mushroom Species in Sri Lanka; Agaricus Bisporus, Pleurotus Ostreatus, Calocybe Sp. (MK-White), Ganoderma Lucidum. Food Prod. Process. Nutr. 2023, 5, 43. [Google Scholar] [CrossRef]
- Commission Directive 2008/100/EC of 28 October 2008 Amending Council Directive 90/496/EEC on Nutrition Labelling for Foodstuffs as Regards Recommended Daily Allowances, Energy Conversion Factors and Definitions. OJ 2008, L 285, 9–12.
- Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kowalczyk, D.; Stadnik, J. Content of Biogenic Amines and Physical Properties of Lacto-Fermented Button Mushrooms. Appl. Sci. 2022, 12, 8957. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Sławińska, A.; Radzki, W.; Gustaw, W. Evaluation of the Potential Use of Probiotic Strain Lactobacillus Plantarum 299v in Lactic Fermentation of Button Mushroom Fruiting Bodies. Acta Sci. Pol. Technol. Aliment. 2016, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Kic, P. Mushroom Drying Characteristics and Changes of Colour. In Proceedings of the 17th International Scientific Conference: Engineering for Rural Development, Jelgava, Lithuania, 23 May 2018; pp. 432–438. [Google Scholar]
- Shams, R.; Singh, J.; Dash, K.K.; Dar, A.H. Comparative Study of Freeze Drying and Cabinet Drying of Button Mushroom. Appl. Food Res. 2022, 2, 100084. [Google Scholar] [CrossRef]
- Sajad, S.; Singh, J.; Gupta, N.; Sharma, S.; Sharma, M.; Sharma, V.; Shankar, U. Physico-Chemical, Color Profile and Total Phenol Content of Freeze Dried (Oyster mushroom) Pleurotus Ostreatus. Pharma Innov. J. 2023, 12, 2076–2078. [Google Scholar]
- Ucar, T.M.; Karadag, A. The Effects of Vacuum and Freeze-Drying on the Physicochemical Properties and in Vitro Digestibility of Phenolics in Oyster Mushroom (Pleurotus ostreatus). J. Food Meas. Charact. 2019, 13, 2298–2309. [Google Scholar] [CrossRef]
- Lagnika, C.; Zhang, M.; Nsor-Atindana, J.; Bashari, M. Effects of Ultrasound and Chemical Treatments on White Mushroom (Agaricus Bisporus) Prior to Modified Atmosphere Packaging in Extending Shelf-Life. J. Food Sci. Technol. 2014, 51, 3749–3757. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Mujumdar, A.S. Comparison of Three New Drying Methods for Drying Characteristics and Quality of Shiitake Mushroom (Lentinus edodes). Dry Technol. 2014, 32, 1791–1802. [Google Scholar] [CrossRef]
- Engin, D. Effect of Drying Temperature on Color and Desorption Characteristics of Oyster Mushroom. Food Sci. Technol. 2020, 40, 187–193. [Google Scholar] [CrossRef]
- Wu, S.; Nie, Y.; Zhao, J.; Fan, B.; Huang, X.; Li, X.; Sheng, J.; Meng, D.; Ding, Y.; Tang, X. The Synergistic Effects of Low-Concentration Acidic Electrolyzed Water and Ultrasound on the Storage Quality of Fresh-Sliced Button Mushrooms. Food Bioprocess Technol. 2018, 11, 314–323. [Google Scholar] [CrossRef]
- Bernaś, E. Comparison of the Mechanism of Enzymatic Browning in Frozen White and Brown A. Bisporus. Eur. Food Res. Technol. 2018, 244, 1239–1248. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Kong, Y.; Zhao, J.; Sun, Y.; Huang, M. Comparative Analysis of Taste Compounds in Shiitake Mushrooms Processed by Hot-Air Drying and Freeze Drying. Int. J. Food Prop. 2019, 22, 1100–1111. [Google Scholar] [CrossRef]
- Arumuganathan, T.; Manikantan, M.R.; Indurani, C.; Rai, R.D.; Kamal, S. Texture and Quality Parameters of Oyster Mushroom as Influenced by Drying Methods. Int. Agrophys 2010, 24, 339–342. [Google Scholar]
- Baltacıoğlu, C.; Baltacıoğlu, H.; Seyhan, R.; Uğur, Ö.; Avcu, O. Investigation of the Effect of Oyster Mushroom (Pleurotus ostreatus) Powder on Biscuit Production and Effect on Quality Criteria by Fourier-transform Infrared Spectroscopy. J. Food Process. Preserv. 2021, 45, e15174. [Google Scholar] [CrossRef]
- Purlis, E. Browning Development in Bakery Products—A Review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and Functional Properties of Thai Organic Rice Flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Mattila, P.; Salo-Väänänen, P.; Könkö, K.; Aro, H.; Jalava, T. Basic Composition and Amino Acid Contents of Mushrooms Cultivated in Finland. J. Agric. Food Chem. 2002, 50, 6419–6422. [Google Scholar] [CrossRef]
- Heo, T.-Y.; Kim, Y.-N.; Park, I.B.; Lee, D.-U. Amplification of Vitamin D2 in the White Button Mushroom (Agaricus Bisporus) by UV-B Irradiation and Jet-Milling for Its Potential Use as a Functional Ingredient. Foods 2020, 9, 1713. [Google Scholar] [CrossRef]
- Wang, N.; Maximiuk, L.; Fenn, D.; Nickerson, M.T.; Hou, A. Development of a Method for Determining Oil Absorption Capacity in Pulse Flours and Protein Materials. Cereal Chem. 2020, 97, 1111–1117. [Google Scholar] [CrossRef]
- Ohizua, E.R.; Adeola, A.A.; Idowu, M.A.; Sobukola, O.P.; Afolabi, T.A.; Ishola, R.O.; Ayansina, S.O.; Oyekale, T.O.; Falomo, A. Nutrient Composition, Functional, and Pasting Properties of Unripe Cooking Banana, Pigeon Pea, and Sweetpotato Flour Blends. Food Sci. Nutr. 2017, 5, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Butt, M.S.; Sharif, M.K.; Sameen, A.; Mumtaz, S.; Sultan, M.T. Functional Properties of Protein Isolates Extracted from Stabilized Rice Bran by Microwave, Dry Heat, and Parboiling. J. Agric. Food Chem. 2011, 59, 2416–2420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sharan, S.; Rinnan, Å.; Orlien, V. Survey on Methods for Investigating Protein Functionality and Related Molecular Characteristics. Foods 2021, 10, 2848. [Google Scholar] [CrossRef] [PubMed]
- Farooq, Z.; Boye, J.I. Novel Food and Industrial Applications of Pulse Flours and Fractions. In Pulse Foods Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Elsevier: Burlington, VT, USA, 2011; pp. 283–323. ISBN 978-0-12-382018-1. [Google Scholar]
- Sulieman, A.A.; Zhu, K.-X.; Peng, W.; Hassan, H.A.; Obadi, M.; Siddeeg, A.; Zhou, H.-M. Rheological and Quality Characteristics of Composite Gluten-Free Dough and Biscuits Supplemented with Fermented and Unfermented Agaricus Bisporus Polysaccharide Flour. Food Chem. 2019, 271, 193–203. [Google Scholar] [CrossRef]
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Topolska, J.; Bogucka-Kocka, A.; Sławińska, A.; Michalak-Majewska, M.; Jabłońska-Ryś, E.; Kuczumow, A. Impact of Processing on Polysaccharides Obtained from Button Mushroom (Agaricus bisporus). Int. J. Food Sci. Technol. 2019, 54, 1405–1412. [Google Scholar] [CrossRef]
- Oikonomou, N.A.; Krokida, M.K. Water Absorption Index and Water Solubility Index Prediction for Extruded Food Products. Int. J. Food Prop. 2012, 15, 157–168. [Google Scholar] [CrossRef]
- Cervenka, L.; Brožková, I.; Vytřasová, J. Effects of the Principal Ingredients of Biscuits upon Water Activity. J. Food Nutr. Res. 2006, 45, 39–43. [Google Scholar]
- Pauly, A.; Pareyt, B.; Lambrecht, M.A.; Fierens, E.; Delcour, J.A. Flour from Wheat Cultivars of Varying Hardness Produces Semi-Sweet Biscuits with Varying Textural and Structural Properties. LWT—Food Sci. Techol. 2013, 53, 452–457. [Google Scholar] [CrossRef]
- Liu, L.; Yang, T.; Yang, J.; Zhou, Q.; Wang, X.; Cai, J.; Huang, M.; Dai, T.; Cao, W.; Jiang, D. Relationship of Starch Pasting Properties and Dough Rheology, and the Role of Starch in Determining Quality of Short Biscuit. Front. Plant Sci. 2022, 13, 829229. [Google Scholar] [CrossRef]
- Thejasri, V.; Hymavathi, T.V.; Roberts, T.P.P.; Anusha, B.; Devi, S.S. Sensory, Physico-Chemical and Nutritional Properties of Gluten Free Biscuits Formulated with Quinoa (Chenopodium quinoa Willd.), Foxtail Millet (Setaria italica) and Hydrocolloids. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1710–1721. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Ai, L. Physical Barrier Effects of Dietary Fibers on Lowering Starch Digestibility. Curr. Opin. Food Sci. 2022, 48, 100940. [Google Scholar] [CrossRef]
- Adedara, O.A.; Taylor, J.R.N. Roles of Protein, Starch and Sugar in the Texture of Sorghum Biscuits. LWT—Food Sci. Techol. 2021, 136, 110323. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Antioxidant Potential of Wheat Flour Chapattis as Affected by Incorporating Barley Flour. LWT—Food Sci. Techol. 2014, 56, 118–123. [Google Scholar] [CrossRef]
- Irakli, M.; Katsantonis, D.; Kleisiaris, F. Evaluation of Quality Attributes, Nutraceutical Components and Antioxidant Potential of Wheat Bread Substituted with Rice Bran. J. Cereal Sci. 2015, 65, 74–80. [Google Scholar] [CrossRef]
- Dziki, D.; Lisiecka, K.; Gawlik-Dziki, U.; Różyło, R.; Krajewska, A.; Cacak-Pietrzak, G. Shortbread Cookies Enriched with Micronized Oat Husk: Physicochemical and Sensory Properties. Appl. Sci. 2022, 12, 12512. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Sławińska, A.; Szwajgier, D. Effect of Lactic Acid Fermentation on Antioxidant Properties and Phenolic Acid Contents of Oyster (Pleurotus ostreatus) and Chanterelle (Cantharellus cibarius) Mushrooms. Food Sci. Biotechnol. 2016, 25, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Smolskaitė, L.; Venskutonis, P.R.; Talou, T. Comprehensive Evaluation of Antioxidant and Antimicrobial Properties of Different Mushroom Species. LWT—Food Sci. Techol. 2015, 60, 462–471. [Google Scholar] [CrossRef]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Radzki, W.; Sławińska, A.; Skrzypczak, K.; Michalak-Majewska, M. The Impact of Drying of Wild-Growing Mushrooms on the Content and Antioxidant Capacity of Water-Soluble Polysaccharides. Int. J. Med. Mushrooms 2019, 21, 393–400. [Google Scholar] [CrossRef]
- Han, H.-M.; Koh, B.-K. Antioxidant Activity of Hard Wheat Flour, Dough and Bread Prepared Using Various Processes with the Addition of Different Phenolic Acids. J. Sci. Food Agric. 2011, 91, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Mau, J.-L. The Umami Taste of Edible and Medicinal Mushrooms. Int. J. Med. Mushrooms 2005, 7, 119–126. [Google Scholar] [CrossRef]
- Beluhan, S.; Ranogajec, A. Chemical Composition and Non-Volatile Components of Croatian Wild Edible Mushrooms. Food Chem. 2011, 124, 1076–1082. [Google Scholar] [CrossRef]
- Jiang, C.; Duan, X.; Lin, L.; Wu, W.; Li, X.; Zeng, Z.; Luo, Q.; Liu, Y. A Review on the Edible Mushroom as a Source of Special Flavor: Flavor Categories, Influencing Factors, and Challenges. Food Front 2023, 4, 1561–1577. [Google Scholar] [CrossRef]
- Selli, S.; Guclu, G.; Sevindik, O.; Kelebek, H. Variations in the Key Aroma and Phenolic Compounds of Champignon (Agaricus Bisporus) and Oyster (Pleurotus Ostreatus) Mushrooms after Two Cooking Treatments as Elucidated by GC–MS-O and LC-DAD-ESI-MS/MS. Food Chem. 2021, 354, 129576. [Google Scholar] [CrossRef]
Sample | Protein % | Fat % | Ash % | Carbohydrates % | Fiber % | Moisture % | Energy Value kcal/100 g |
---|---|---|---|---|---|---|---|
Raw materials | |||||||
Ab powder | 33.61 ± 0.31 C | 3.20 ± 0.04 C | 9.68 ± 0.02 C | 15.82 ± 0.57 B | 31.15 ± 0.14 B | 6.54 ± 0.11 A | 289 ± 1.27 B |
Po powder | 26.89 ± 1.06 B | 2.75 ± 0.09 B | 8.36 ± 0.08 B | 7.86 ± 0.54 A | 45.77 ± 0.7 C | 8.37 ± 0.04 B | 255 ± 0.35 A |
Wheat flour | 11 ± 0.2 A | 1.2 ± 0.08 A | 0.5 ± 0.02 A | 71 ± 1.2 C | 3.0 ± 0.2 A | 13.3 ± 0.11 C | 345 ± 2.71 C |
Cookies | |||||||
Control | 6.21 ± 0.04 a | 29.23 ± 0.13 a | 0.21 ± 0.03 a | 56.21 ± 0.29 d | 2.80 ± 0.09 a | 5.34 ± 0.07 b | 518 ± 2.10 b |
Ab2 | 6.67 ± 0.04 c | 29.31 ± 0.07 a | 0.34 ± 0.02 b | 52.93 ± 0.07 b | 5.67 ± 0.10 b | 5.09 ± 0.00 b | 513 ± 0.70 ab |
Ab4 | 6.76 ± 0.03 c | 29.46 ± 0.18 a | 0.52 ± 0.03 b | 53.23 ± 0.33 bc | 5.91 ± 0.12 b | 4.12 ± 0.03 a | 517 ± 0.57 b |
Ab6 | 7.20 ± 0.10 d | 29.57 ± 0.17 a | 0.64 ± 0.02 d | 51.15 ± 0.33 a | 6.87 ± 0.14 d | 4.57 ± 0.02 a | 513 ± 1.52 ab |
Po2 | 6.45 ± 0.02 b | 29.30 ± 0.20 a | 0.28 ± 0.01 b | 53.69 ± 0.26 c | 5.91 ± 0.15 b | 4.37 ± 0.09 a | 516 ± 1.60 ab |
Po4 | 6.75 ± 0.02 c | 29.44 ± 0.32 a | 0.38 ± 0.02 c | 52.90 ± 0.26 b | 6.43 ± 0.14 c | 4.10 ± 0.16 a | 516 ± 4.28 ab |
Po6 | 6.78 ± 0.05 c | 29.38 ± 0.13 a | 0.50 ± 0.01 e | 50.87 ± 0.19 a | 8.02 ± 0.15 e | 4.45 ± 0.22 a | 511 ± 0.91 a |
Element mg/kg dw | A. bisporus Powder | P. ostreatus Powder | Wheat Flour |
---|---|---|---|
Ca | 320.14 ± 6.97 c | 114.44 ± 4.15 a | 234.91 ± 3.52 b |
Mg | 1044.99 ± 22.84 b | 1062.48 ± 17.63 b | 155.32 ± 8.73 a |
K | 1962.06 ± 54.20 b | 15,758.11 ± 126.65 c | 231.06 ± 10.47 a |
Na | 441.55 ± 10.07 b | 85.37 ± 4.12 a | nd |
Fe | 34.58 ± 2.84 b | 53.34 ± 2.29 c | 6.86 ± 0.32 a |
Zn | 56.44 ± 1.91 b | 51.44 ± 2.58 b | 5.57 ± 0.25 a |
Cu | 36.13 ± 2.39 c | 7.13 ± 0.09 b | 1.89 ± 0.14 a |
Mn | 5.08 ± 0.03 c | 4.42 ± 0.14 b | 3.18 ± 0.07 a |
Se | 0.414 ± 0.007 b | 0.115 ± 0.004 a | 0.116 ± 0.005 a |
Co | 0.061 ± 0.003 a | 0.059 ± 0.004 a | 0.060 ± 0.001 a |
Ni | 0.184 ± 0.008 c | 0.161 ± 0.007 b | 0.127 ± 0.003 a |
Pb | 0.029 ± 0.006 a | 0.042 ± 0.003 b | nd |
Cd | 0.038 ± 0.004 b | 0.176 ± 0.002 c | 0.017 ± 0.002 a |
Element mg/kg dw | Cookies | ||||||
---|---|---|---|---|---|---|---|
Control | Ab2 | Ab4 | Ab6 | Po2 | Po4 | Po6 | |
Ca | 371.15 ± 13.79 a | 373.52 ± 14.13 a | 370.11 ± 10.12 a | 378.13 ± 14.83 a | 363.81 ± 13.64 a | 363.11 ± 19.88 a | 356.95 ± 13.66 a |
Mg | 112.09 ± 6.78 a | 123.77 ± 3.73 ab | 137.97 ± 6.96 bc | 152.78 ± 8.04 c | 119.78 ± 9.85 ab | 127.65 ± 10.54 ab | 142.00 ± 9.87 bc |
K | 81.52 ± 4.40 a | 94.89 ± 5.60 a | 100.46 ± 6.83 a | 123.66 ± 11.68 a | 203.14 ± 18.10 b | 322.25 ± 28.04 c | 408.79 ± 22.85 d |
Na | nd | nd | nd | nd | nd | nd | nd |
Fe | 6.99 ± 0.13 a | 7.37 ± 0.51 a | 7.95 ± 0.46 abc | 8.75 ± 0.34 bcd | 7.82 ± 0.29 ab | 8.88 ± 0.19 cd | 9.69 ± 0.53 d |
Zn | 6.99 ± 0.08 a | 8.33 ± 0.06 bc | 9.40 ± 0.32 de | 10.73 ± 0.46 f | 7.97 ± 0.18 b | 9.00 ± 0.43 cd | 10.21 ± 0.49 ef |
Cu | 1.36 ± 0.05 a | 1.83 ± 0.03 b | 2.39 ± 0.10 c | 2.83 ± 0.08 d | 1.41 ± 0.03 a | 1.46 ± 0.02 a | 1.51 ± 0.09 a |
Mn | 1.64 ± 0.02 a | 1.64 ± 0.05 a | 1.63 ± 0.07 a | 1.67 ± 0.07 a | 1.60 ± 0.07 a | 1.63 ± 0.04 a | 1.67 ± 0.07 a |
Se | 0.103 ± 0.006 a | 0.108 ± 0.007 a | 0.111 ± 0.010 a | 0.116 ± 0.014 a | 0.102 ± 0.006 a | 0.105 ± 0.005 a | 0.114 ± 0.014 a |
Co | 0.051 ± 0.002 a | 0.050 ± 0.004 a | 0.052 ± 0.001 a | 0.057 ± 0.005 a | 0.053 ± 0.001 a | 0.053 ± 0.003 a | 0.055 ± 0.005 a |
Ni | 0.158 ± 0.006 a | 0.160 ± 0.006 a | 0.161 ± 0.008 a | 0.163 ± 0.006 a | 0.158 ± 0.006 a | 0.155 ± 0.002 a | 0.161 ± 0.007 a |
Pb | nd | nd | nd | nd | nd | nd | nd |
Cd | nd | nd | nd | nd | nd | nd | nd |
Sample | Parameter | ||||
---|---|---|---|---|---|
L* | a* | b* | ∆E | BI | |
Raw materials | |||||
A. bisporus powder | 82.91 ± 0.21 A | 1.47 ± 0.07 C | 14.39 ± 0.22 B | - | - |
P. ostreatus powder | 87.25 ± 0.23 B | -0.86 ± 0.06 A | 15.18 ± 0.34 C | - | - |
Wheat flour | 93.47 ± 0.18 C | 0.36 ± 0.03 B | 9.34 ± 0.17 A | - | - |
Cookies | |||||
Control | 77.39 ± 1.00 f | 3.10 ± 0.47 a | 26.50 ± 1.31 b | - | 22.61 ± 1.00 a |
Ab2 | 66.04 ± 1.00 c | 5.25 ± 0.71 b | 21.07 ± 1.00 a | 12.92 ± 1.30 c | 33.96 ± 1.00 d |
Ab4 | 62.61 ± 0.71 b | 6.19 ± 0.54 bc | 21.73 ± 0.66 a | 15.95 ± 1.01 d | 37.39 ± 0.71 e |
Ab6 | 60.97 ± 1.33 a | 7.11 ± 0.75 d | 21.88 ± 0.72 a | 17.33 ± 1.71 d | 39.03 ± 1.33 f |
Po2 | 75.30 ± 1.27 e | 5.37 ± 1.26 b | 29.17 ± 1.41 c | 4.63 ± 1.59 a | 24.70 ± 1.27 b |
Po4 | 74.66 ± 1.39 e | 6.12 ± 1.17 bc | 29.00 ± 1.30 c | 5.15 ± 1.18 a | 25.34 ± 1.39 b |
Po6 | 72.11 ± 1.14 d | 6.67 ± 1.09 cd | 28.96 ± 1.06 c | 7.05 ± 1.30 b | 27.89 ± 1.14 c |
Sample | Parameter | ||||
---|---|---|---|---|---|
BD (g/mL) | WHC (gwater/g) | OHC (goil/g) | SC (mL/g) | WSI (%) | |
Ab powder | 0.10 ± 0.00 B | 5.17 ± 0.26 A | 5.44 ± 0.32 A | 20.51 ± 0.48 B | 42.13 ± 0.22 A |
Po powder | 0.08 ± 0.01 A | 7.32 ± 0.36 B | 7.29 ± 0.10 B | 16.51 ± 0.41 A | 54.06 ± 0.41 B |
Wheat flour | 0.76 ± 0.01 f | 0.77 ± 0.02 a | 0.68 ± 0.01 a | 2.59 ± 0.08 ab | 7.30 ± 0.17 a |
WFAb2 | 0.70 ± 0.01 e | 0.80 ± 0.01 a | 0.76 ± 0.02 b | 2.61 ± 0.04 ab | 7.94 ± 0.26 ab |
WFAb4 | 0.66 ± 0.01 d | 0.83 ± 0.02 a | 0.85 ± 0.02 c | 2.70 ± 0.03 b | 8.47 ± 0.13 b |
WFAb6 | 0.63 ± 0.01 bc | 0.87 ± 0.03 ab | 0.95 ± 0.00 d | 2.88 ± 0.04 c | 9.80 ± 0.42 c |
WFPo2 | 0.65 ± 0.02 cd | 0.90 ± 0.06 ab | 0.80 ± 0.03 bc | 2.56 ± 0.04 a | 7.91 ± 0.04 ab |
WFPo4 | 0.62 ± 0.01 b | 0.99 ± 0.10 bc | 0.91 ± 0.02 d | 2.61 ± 0.02 ab | 10.10 ± 0.20 c |
WFPo6 | 0.58 ± 0.01 a | 1.07 ± 0.03 c | 1.03 ± 0.03 e | 2.98 ± 0.05 c | 11.15 ± 0.32 d |
Sample | Parameter | |||||
---|---|---|---|---|---|---|
Weight (g) | Diameter (D) (mm) | Thickness (T) (mm) | Spread Ratio D/T | aw | Hardness (g) | |
Control | 26.25 ± 0.96 a | 73.27 ± 0.30 ab | 7.92 ± 0.41 a | 9.27 ± 0.47 ab | 0.513 ± 0.01 e | 569.78 ± 112.83 a |
Ab2 | 26.46 ± 1.00 a | 74.30 ± 0.99 bc | 8.06 ± 0.35 a | 9.24 ± 0.45 ab | 0.482 ± 0.01 d | 564.94 ± 120.02 a |
Ab4 | 25.60 ± 0.79 a | 74.32 ± 0.75 bc | 7.78 ± 0.41 a | 9.58 ± 0.43 b | 0.445 ± 0.01 bc | 613.04 ± 122.59 a |
Ab6 | 25.93 ± 0.90 a | 74.31 ± 0.74 bc | 8.21 ± 0.28 a | 9.06 ± 0.29 ab | 0.463 ± 0.01 cd | 797.24 ± 123.94 bc |
Po2 | 25.44 ± 0.75 a | 75.05 ± 0.78 c | 7.83 ± 0.20 a | 9.59 ± 0.31 b | 0.437 ± 0.00 b | 526.13 ± 79.35 a |
Po4 | 25.43 ± 0.70 a | 74.62 ± 1.24 bc | 8.32 ± 0.12 a | 8.97 ± 0.18 ab | 0.404 ± 0.01 a | 659.21 ± 116.87 ab |
Po6 | 25.53 ± 0.87 a | 72.76 ± 0.36 a | 8.29 ± 0.44 a | 8.80 ± 0.44 a | 0.442 ± 0.01 bc | 894.01 ± 138.43 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sławińska, A.; Jabłońska-Ryś, E.; Gustaw, W. Physico-Chemical, Sensory, and Nutritional Properties of Shortbread Cookies Enriched with Agaricus bisporus and Pleurotus ostreatus Powders. Appl. Sci. 2024, 14, 1938. https://doi.org/10.3390/app14051938
Sławińska A, Jabłońska-Ryś E, Gustaw W. Physico-Chemical, Sensory, and Nutritional Properties of Shortbread Cookies Enriched with Agaricus bisporus and Pleurotus ostreatus Powders. Applied Sciences. 2024; 14(5):1938. https://doi.org/10.3390/app14051938
Chicago/Turabian StyleSławińska, Aneta, Ewa Jabłońska-Ryś, and Waldemar Gustaw. 2024. "Physico-Chemical, Sensory, and Nutritional Properties of Shortbread Cookies Enriched with Agaricus bisporus and Pleurotus ostreatus Powders" Applied Sciences 14, no. 5: 1938. https://doi.org/10.3390/app14051938
APA StyleSławińska, A., Jabłońska-Ryś, E., & Gustaw, W. (2024). Physico-Chemical, Sensory, and Nutritional Properties of Shortbread Cookies Enriched with Agaricus bisporus and Pleurotus ostreatus Powders. Applied Sciences, 14(5), 1938. https://doi.org/10.3390/app14051938