Chlorella vulgaris Harvesting: Chemical Flocculation with Chitosan, Aluminum Sulfate, and Ferric Sulfate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Microalgal Culture
(R2 = 0.9902, Limit of detection = 0.02 gDW·L−1, Limit of quantification = 0.07 gDW·L−1)
2.1.2. Flocculants
2.2. Methods
2.2.1. Chemical Flocculation Experiments
2.2.2. Factorial Design of Experiments
3. Results and Discussion
3.1. Optimal pH Determination
3.2. Optimal Dosage Range Determination
3.3. Optimization of Microalgal Harvesting Variables: Dosage, Settling Time, and Mixing Times
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Flocculant | Run | Dosage (mg·L−1) | Settling Time (min) | RM Time (min) | SM Time (min) | Harvesting Efficiency (%) |
---|---|---|---|---|---|---|
Aluminum sulfate | 1 | 50 | 5 | 0 | 0 | 0.0 ± 0.1 |
2 | 200 | 5 | 0 | 0 | 0.0 ± 0.1 | |
3 | 50 | 15 | 0 | 0 | 0.0 ± 0.1 | |
4 | 200 | 15 | 0 | 0 | 0.0 ± 0.1 | |
5 | 50 | 5 | 3 | 0 | 89.6 ± 0.4 | |
6 | 200 | 5 | 3 | 0 | 96.8 ± 0.1 | |
7 | 50 | 15 | 3 | 0 | 90.5 ± 0.4 | |
8 | 200 | 15 | 3 | 0 | 97.0 ± 0.1 | |
9 | 50 | 5 | 0 | 15 | 80.6 ± 1.2 | |
10 | 200 | 5 | 0 | 15 | 97.4 ± 1.2 | |
11 | 50 | 15 | 0 | 15 | 98.2 ± 0.4 | |
12 | 200 | 15 | 0 | 15 | 97.2 ± 1.2 | |
13 | 50 | 5 | 3 | 15 | 96.4 ± 0.8 | |
14 | 200 | 5 | 3 | 15 | 98.5 ± 0.4 | |
15 | 50 | 15 | 3 | 15 | 96.6 ± 0.8 | |
16 | 200 | 15 | 3 | 15 | 98.5 ± 0.5 | |
Ferric sulfate | 1 | 150 | 5 | 0 | 0 | 0.0 ± 0.1 |
2 | 200 | 5 | 0 | 0 | 0.0 ± 0.1 | |
3 | 150 | 15 | 0 | 0 | 0.0 ± 0.1 | |
4 | 200 | 15 | 0 | 0 | 0.0 ± 0.1 | |
5 | 150 | 5 | 3 | 0 | 96.1 ± 0.1 | |
6 | 200 | 5 | 3 | 0 | 97.5 ± 0.4 | |
7 | 150 | 15 | 3 | 0 | 97.2 ± 0.1 | |
8 | 200 | 15 | 3 | 0 | 97.7 ± 0.5 | |
9 | 150 | 5 | 0 | 15 | 95.6 ± 0.4 | |
10 | 200 | 5 | 0 | 15 | 94.8 ± 0.4 | |
11 | 150 | 15 | 0 | 15 | 95.8 ± 0.1 | |
12 | 200 | 15 | 0 | 15 | 94.8 ± 0.6 | |
13 | 150 | 5 | 3 | 15 | 97.4 ± 0.9 | |
14 | 200 | 5 | 3 | 15 | 97.6 ± 0.1 | |
15 | 150 | 15 | 3 | 15 | 97.4 ± 0.4 | |
16 | 200 | 15 | 3 | 15 | 97.8 ± 0.1 | |
Chitosan | 1 | 10 | 5 | 0 | 0 | 0.0 ± 0.1 |
2 | 50 | 5 | 0 | 0 | 0.0 ± 0.1 | |
3 | 10 | 15 | 0 | 0 | 0.0 ± 0.1 | |
4 | 50 | 15 | 0 | 0 | 0.0 ± 0.1 | |
5 | 10 | 5 | 3 | 0 | 95.6 ± 1.4 | |
6 | 50 | 5 | 3 | 0 | 98.7 ± 2.1 | |
7 | 10 | 15 | 3 | 0 | 98.7 ± 0.9 | |
8 | 50 | 15 | 3 | 0 | 98.1 ± 1.3 | |
9 | 10 | 5 | 0 | 15 | 99.1 ± 0.1 | |
10 | 50 | 5 | 0 | 15 | 95.6 ± 0.9 | |
11 | 10 | 15 | 0 | 15 | 99.4 ± 0.3 | |
12 | 50 | 15 | 0 | 15 | 95.7 ± 0.2 | |
13 | 10 | 5 | 3 | 15 | 97.7 ± 0.4 | |
14 | 50 | 5 | 3 | 15 | 99.0 ± 0.4 | |
15 | 10 | 15 | 3 | 15 | 98.4 ± 1.3 | |
16 | 50 | 15 | 3 | 15 | 99.1 ± 0.1 |
Dosage (A) | Settling Time (B) | RM Time (C) | SM Time (D) | A × B | A × C | A × D | B × C | B × D | C × D | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Aluminum sulfate | Effect | 4.181 | 2.356 | 48.806 | 48.681 | −2.319 | 0.256 | 0.756 | −2.019 | 2.106 | −44.669 |
p-value | 0.002 | 0.061 | 0.000 | 0.000 | 0.064 | 0.831 | 0.531 | 0.104 | 0.091 | 0.000 | |
Ferric sulfate | Effect | 0.069 | 0.206 | 49.719 | 47.831 | −0.131 | 0.556 | −0.406 | 0.169 | −0.094 | −47.406 |
p-value | 0.264 | 0.002 | 0.000 | 0.000 | 0.040 | 0.000 | 0.000 | 0.010 | 0.133 | 0.000 | |
Chitosan | Effect | −0.337 | 0.463 | 49.450 | 49.100 | −0.562 | 1.475 | −0.950 | 0.350 | −0.150 | −48.337 |
p-value | 0.214 | 0.093 | 0.000 | 0.000 | 0.044 | 0.000 | 0.002 | 0.198 | 0.575 | 0.000 |
References
- Silva, M.I.; Esteves, A.F.; Pires, J.C.; Gonçalves, A.L. Microalgal Biorefineries: Key Processes and Main Challenges. In Microalgal Biotechnology: Recent Advances, Market Potential, and Sustainability; Shekh, A., Schenk, P., Sarada, R., Eds.; Royal Society of Chemistry: London, UK, 2021; pp. 36–76. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Roselet, F.; Vandamme, D.; Muylaert, K.; Abreu, P.C. Harvesting of microalgae for biomass production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M., Wang, Z., Eds.; Springer: Singapore, 2019; pp. 211–243. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Ferrer, I.; Uggetti, E.; Arnabat, C.; Salvado, H.; Garcia, J. Settling velocity distribution of microalgal biomass from urban wastewater treatment high rate algal ponds. Algal Res. 2016, 16, 409–417. [Google Scholar] [CrossRef]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef]
- Hua, L.-C.; Lai, C.-H.; Wang, G.-S.; Lin, T.-F.; Huang, C. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1803–1834. [Google Scholar] [CrossRef]
- González-Camejo, J.; Pachés, M.; Marín, A.; Jiménez-Benítez, A.; Seco, A.; Barat, R. Production of microalgal external organic matter in a Chlorella-dominated culture: Influence of temperature and stress factors. Environ. Sci. Water Res. Technol. 2020, 6, 1828–1841. [Google Scholar] [CrossRef]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of microalgae by flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef]
- Roselet, F.; Burkert, J.; Abreu, P.C. Flocculation of Nannochloropsis oculata using a tannin-based polymer: Bench scale optimization and pilot scale reproducibility. Biomass Bioenergy 2016, 87, 55–60. [Google Scholar] [CrossRef]
- Davis, M.L. Coagulation and Flocculation. In Water and Wastewater Engineering: Design Principles and Practice; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Machado, G.; Dos Santos, C.A.; Gomes, J.; Faria, D.; Santos, F.; Lourega, R. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant. Sci. Total Environ. 2020, 745, 140875. [Google Scholar] [CrossRef]
- Sanyano, N.; Chetpattananondh, P.; Chongkhong, S. Coagulation–flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 2013, 147, 471–476. [Google Scholar] [CrossRef]
- Schmitt, F.O.; Rodrigues, R.T.; Oliveira, C. Efficacy of two natural tannins-based polymers in contrast to aluminum sulfate for drinking water production. Clean. Eng. Technol. 2021, 3, 100099. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Hiltunen, E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 2018, 11, 183. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, K.; Lee, J.; Lee, Y.-H.; Han, J.-I.; Park, J.-Y.; Oh, Y.-K. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresour. Technol. 2017, 239, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Rossi, S.; Visigalli, S.; Cascino, F.C.; Mantovani, M.; Mezzanotte, V.; Parati, K.; Canziani, R.; Turolla, A.; Ficara, E. Metal-based flocculation to harvest microalgae: A look beyond separation efficiency. Sci. Total Environ. 2021, 799, 149395. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Chen, Z.; Krishnamurti, G.; Naidu, R.; Megharaj, M. Toxicity and bioaccumulation of iron in soil microalgae. J. Appl. Phycol. 2016, 28, 2767–2776. [Google Scholar] [CrossRef]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding aspects of Aluminum exposure in Alzheimer’s disease development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Mold, M.; Linhart, C.; Gómez-Ramírez, J.; Villegas-Lanau, A.; Exley, C. Aluminum and amyloid-β in familial Alzheimer’s disease. J. Alzheimer’s Dis. 2020, 73, 1627–1635. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Japar, A.S.; Takriff, M.S.; Mohd Yasin, N.H.; Mahmod, S.S. Optimization of Chlorella biomass harvesting by flocculation and its potential for biofuel production. J. Appl. Phycol. 2021, 33, 1621–1629. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals. Freshwater Alga and Cyanobacteria, Growth Inhibition Test; OECD: Paris, France, 2011; pp. 1–25. [Google Scholar]
- Divakaran, R.; Pillai, V.S. Flocculation of algae using chitosan. J. Appl. Phycol. 2002, 14, 419–422. [Google Scholar] [CrossRef]
- Goswami, G.; Kumar, R.; Sinha, A.; Maiti, S.K.; Dutta, B.C.; Singh, H.; Das, D. A low-cost and scalable process for harvesting microalgae using commercial-grade flocculant. RSC Adv. 2019, 9, 39011–39024. [Google Scholar] [CrossRef] [PubMed]
- Surendhiran, D.; Vijay, M. Study on flocculation efficiency for harvesting Nannochloropsis oculata for biodiesel production. Int. J. ChemTech. Res. 2013, 5, 1761–1769. [Google Scholar]
- Kirnev, P.; de Carvalho, J.; Miyaoka, J.; Cartas, L.; Vandenberghe, L.; Soccol, C. Harvesting Neochloris oleoabundans using commercial organic flocculants. J. Appl. Phycol. 2018, 30, 2317–2324. [Google Scholar] [CrossRef]
- Xu, Y.; Purton, S.; Baganz, F. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour. Technol. 2013, 129, 296–301. [Google Scholar] [CrossRef]
- Rashid, N.; Rehman, M.S.U.; Han, J.I. Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris. Chem. Eng. J. 2013, 226, 238–242. [Google Scholar] [CrossRef]
- Gani, P.; Mohamed Sunar, N.; Matias-Peralta, H.; Abdul Latiff, A.A. Effect of pH and alum dosage on the efficiency of microalgae harvesting via flocculation technique. Int. J. Green Energy 2017, 14, 395–399. [Google Scholar] [CrossRef]
- Minitab: Coefficients Table for Analyze Factorial Design. Available online: https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/factorial/analyze-factorial-design/interpret-the-results/all-statistics-and-graphs/coefficients-table/ (accessed on 15 December 2023).
- Minitab: Model Summary Table for Analyze Factorial Design. Available online: https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/factorial/analyze-factorial-design/interpret-the-results/all-statistics-and-graphs/model-summary-table/ (accessed on 15 December 2023).
- Koley, S.; Prasad, S.; Bagchi, S.K.; Mallick, N. Development of a harvesting technique for large-scale microalgal harvesting for biodiesel production. RSC Adv. 2017, 7, 7227–7237. [Google Scholar] [CrossRef]
- Merck: Aluminum Sulfate Octadecahydrate. Available online: https://www.sigmaaldrich.com/PT/en/product/sigald/227617 (accessed on 5 January 2024).
- Merck: Iron(III) Sulfate Hydrate. Available online: https://www.sigmaaldrich.com/PT/en/substance/ironiiisulfatehydrate39988anhydrousbasis15244107 (accessed on 5 January 2024).
- Merck: Chitosan. Available online: https://www.sigmaaldrich.com/PT/en/product/aldrich/448877 (accessed on 5 January 2024).
Run | Dosage (mg·L−1) | Settling Time | RM Time (min) | SM Time (min) |
---|---|---|---|---|
1 | −1 | −1 | −1 | −1 |
2 | +1 | −1 | −1 | −1 |
3 | −1 | +1 | −1 | −1 |
4 | +1 | +1 | −1 | −1 |
5 | −1 | −1 | +1 | −1 |
6 | +1 | −1 | +1 | −1 |
7 | −1 | +1 | +1 | −1 |
8 | +1 | +1 | +1 | −1 |
9 | −1 | −1 | −1 | +1 |
10 | +1 | −1 | −1 | +1 |
11 | −1 | +1 | −1 | +1 |
12 | +1 | +1 | −1 | +1 |
13 | −1 | −1 | +1 | +1 |
14 | +1 | −1 | +1 | +1 |
15 | −1 | +1 | +1 | +1 |
16 | +1 | +1 | +1 | +1 |
Flocculant | Coded Value | Dosage (mg·L−1) | Settling Time | RM Time (min) | SM Time (min) |
---|---|---|---|---|---|
Aluminum sulfate | −1 | 50 | 5 | 0 | 0 |
+1 | 200 | 15 | 3 | 15 | |
Ferric sulfate | −1 | 150 | 5 | 0 | 0 |
+1 | 200 | 15 | 3 | 15 | |
Chitosan | −1 | 10 | 5 | 0 | 0 |
+1 | 50 | 15 | 3 | 15 |
Flocculant | Initial Biomass Concentration (mgDW·L−1) | Optimal pH |
---|---|---|
Aluminum sulfate | 342 ± 9 | 9 |
Ferric sulfate | 342 ± 9 | 9 |
Chitosan | 339 ± 5 | 5 |
Flocculant | pH | Initial Biomass Concentration (mgDW·L−1) | Dosage (mg·L−1) | Final Biomass Concentration (mgDW·L−1) | Harvesting Efficiency (%) |
---|---|---|---|---|---|
Aluminum sulfate | 9 | 335 ± 1 | 10 | 34 ± 4 | 89.8 ± 0.2 |
50 | 12 ± 3 | 96.4 ± 0.1 | |||
100 | 13 ± 3 | 96.2 ± 0.1 | |||
150 | 14 ± 2 | 95.9 ± 0.1 | |||
200 | 12 ± 1 | 96.4 ± 0.1 | |||
Ferric sulfate | 9 | 335 ± 2 | 10 | 10 ± 1 | 96.9 ± 0.2 |
50 | 10 ± 1 | 97.0 ± 0.1 | |||
100 | 11 ± 2 | 96.7 ± 0.1 | |||
150 | 9 ± 1 | 97.4 ± 0.1 | |||
200 | 8 ± 1 | 97.7 ± 0.1 | |||
Chitosan | 5 | 335 ± 2 | 10 | 2 ± 1 | 99.3 ± 0.2 |
50 | 5 ± 3 | 98.4 ± 0.1 | |||
100 | 13 ± 3 | 96.1 ± 0.1 | |||
150 | 22 ± 8 | 93.2 ± 0.3 | |||
200 | 29 ± 4 | 91.2 ± 0.1 |
Flocculant | Optimal Dosage Range (mg·L−1) |
---|---|
Aluminum sulfate | 50–200 |
Ferric sulfate | 150–200 |
Chitosan | 10–50 |
Flocculant | Regression Equation | R2 (%) | Predicted R2 (%) |
---|---|---|---|
Aluminum sulfate | η (%) = −8.77 + 0.0520 × A + 32.4 × C + 5.86 × D − 1.99 × C × D | 96.56 | 95.99 |
Ferric sulfate | η (%) = −0.766 + 0.105 × B + 31.0 × C + 6.55 × D + 0.0113 × B × C − 2.11 × C × D | 97.00 | 97.00 |
Chitosan | η (%) = −0.459 + 31.6 × C + 6.61 × D + 0.0246 × A × C − 2.15 × C × D | 96.98 | 96.95 |
Flocculant | Optimal Predicted Parameters | Predicted Harvesting Efficiency (%) | Experimental Harvesting Efficiency (%) | Error (%) | |||
---|---|---|---|---|---|---|---|
Dosage (mg·L−1) | Settling Time (min) | RM Time (min) | SM Time (min) | ||||
Aluminum sulfate | 250 | NSS (5–15) | 3 | 15 | 99.8 | 99.1 ± 0.1 | 0.7 |
Ferric sulfate | NSS (150–200) | 30 | 3 | 15 | 99.8 | 98.4 ± 0.1 | 1.4 |
Chitosan | NSS (10–50) | NSS (5–15) | 0 | 15.5 | 100 | 99.5 ± 0.1 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, C.A.; Esteves, A.F.; Pires, J.C.M. Chlorella vulgaris Harvesting: Chemical Flocculation with Chitosan, Aluminum Sulfate, and Ferric Sulfate. Appl. Sci. 2024, 14, 598. https://doi.org/10.3390/app14020598
Machado CA, Esteves AF, Pires JCM. Chlorella vulgaris Harvesting: Chemical Flocculation with Chitosan, Aluminum Sulfate, and Ferric Sulfate. Applied Sciences. 2024; 14(2):598. https://doi.org/10.3390/app14020598
Chicago/Turabian StyleMachado, Cláudia A., Ana F. Esteves, and José C. M. Pires. 2024. "Chlorella vulgaris Harvesting: Chemical Flocculation with Chitosan, Aluminum Sulfate, and Ferric Sulfate" Applied Sciences 14, no. 2: 598. https://doi.org/10.3390/app14020598