Horizontal Distribution of Liquid in an Over-Row Sprayer with a Secondary Air Blower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Design
- Constants:
- Distance (height) between the boom of the over-row sprayer with an SAB and the patternator—50 cm;
- Working pressure—0.3 MPa.
- 2.
- Independent variables:
- Type of nozzle—a Lechler 110-03 flat-fan nozzle and a Lechler TR 80-03C hollow-cone nozzle for viticulture and orchard crops;
- Nozzle position—one nozzle positioned along the diffuser’s axis of symmetry and two nozzles positioned on both sides of the diffuser’s axis of symmetry at a distance of 9 cm from that axis;
- Configuration of the spray boom—without an SAB, with an SAB and the fan operating in first gear, and with an SAB and the fan operating in second gear.
- The working parameters of the sprayer were set, including the working pressure of the spray liquid, the airflow rate controlled by the fan’s rotational speed (two speed settings), the height (distance) of the sprayer boom above the patternator, and the type and number of nozzles (nozzle position relative to the diffuser’s axis of symmetry);
- The tractor’s power transmission system was activated to transmit mechanical power to the sprayer pump and, if required, to the fan;
- The tractor’s engine was set to a nominal rotational speed (1600 rpm);
- The working pressure of the spray liquid was set at 0.3 MPa (pure water was used in the experiment);
- Measuring cylinders were positioned under the patternator gutters and the liquid transferred into each gutter was collected into the cylinders for 60 s;
- The volume of liquid collected in each cylinder was read and recorded in an Excel spreadsheet.
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carballido, J.; Rodríguez-Lizana, A.; Agüera, J.; Pérez-Ruiz, M. Field sprayer for inter and intra-row weed control: Performance and labor savings. Span. J. Agric. Res. 2013, 11, 642–651. [Google Scholar] [CrossRef]
- Terra, F.P.; Nascimento, G.H.; Duarte, G.A.; Drews, P.L.J., Jr. Autonomous agricultural sprayer using machine vision and nozzle control. J. Intell. Robot. Syst. 2021, 102, 38. [Google Scholar] [CrossRef]
- Hanif, A.S.; Han, X.; Yu, S.-H. Independent control spraying system for UAV-Based precise variable sprayer: A review. Drones 2022, 6, 383. [Google Scholar] [CrossRef]
- Li, J.; He, M.; Cui, H.; Lin, P.; Chen, Y.; Ling, G.; Huang, G.; Fu, H. Characterizing droplet retention in fruit tree canopies for air-assisted spraying. Agriculture 2022, 12, 1093. [Google Scholar] [CrossRef]
- Zanin, A.R.A.; Neves, D.C.; Teodoro, L.P.R.; da Silva Júnior, C.A.; da Silva, S.P.; Teodoro, P.E.; Baio, F.H.R. Reduction of pesticide application via real-time precision spraying. Sci. Rep. 2022, 12, 5638. [Google Scholar] [CrossRef]
- Kharim, M.N.; Wayayok, A.; Shariff, A.R.M.; Abdullah, A.F.; Husin, E.M. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Comput. Electron. Agric. 2019, 167, 10504. [Google Scholar] [CrossRef]
- Sinha, R.; Ranjan, R.; Khot, L.R.; Hoheisel, G.A.; Grieshop, M.J. Comparison of within canopy deposition for a solid set canopy delivery system (SSCDS) and an axial-fan airblast sprayer in a vineyard. Crop Prot. 2020, 132, 105124. [Google Scholar] [CrossRef]
- Wawrzosek, J.; Parafiniuk, S. Optimization of the opening shape in slot spray nozzles in a field boom sprayer. Sustainability 2021, 13, 3291. [Google Scholar] [CrossRef]
- Bayat, A.; İtmeç, M.; Bolat, A. Modal analysis of field sprayer boom design for different materials. Sci. Pap.-Ser. A-Agron. 2018, 61, 434–437. Available online: https://www.cabdirect.org/cabdirect/abstract/20203093705 (accessed on 15 July 2024).
- Yan, J.; Xue, X.; Cui, L.; Ding, S.; Gu, W.; Le, F. Analysis of dynamic behavior of spray boom under step excitation. Appl. Sci. 2021, 11, 10129. [Google Scholar] [CrossRef]
- Baltazar, A.R.; Santos, F.N.d.; Moreira, A.P.; Valente, A.; Cunha, J.B. Smarter robotic sprayer system for precision agriculture. Electronics 2021, 10, 2061. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Kusnandar, K.; Brazier, F.M.; van Kooten, O. Empowering change for sustainable agriculture: The need for participation. Int. J. Agric. Sustain. 2019, 17, 271–286. [Google Scholar] [CrossRef]
- Fattahi, S.H.; Abdollah pour, S. Sensitivity analysis of variables affecting spray drift from pesticides for their environmental risk assessments on agricultural lands. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Herbst, A.; Osteroth, H.-J.; Stendel, H. A novel method for testing automatic systems for controlling the spray boom height. Biosyst. Eng. 2018, 174, 115–125. [Google Scholar] [CrossRef]
- Dou, H.; Wang, S.; Zhai, C.; Chen, L.; Wang, X.; Zhao, X. A LiDAR sensor-based spray boom height detection method and the corresponding experimental validation. Sensors 2021, 21, 2107. [Google Scholar] [CrossRef]
- Perez-Ruiz, M.; Carballido, J.; Agüera, J.; Rodríguez-Lizana, A. Development and evaluation of a combined cultivator and band sprayer with a row-centering RTK-GPS guidance system. Sensors 2013, 13, 3313–3330. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Minaei, S.; Ghobadian, B.; Masoudi, H. Ultrasonic sensing of pistachio canopy for low-volume precision spraying. Comput. Electron. Agric. 2015, 112, 149–160. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Trans. ASABE 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Xiao, Y.; Jiao, T.; Li, W. Design and experimental verification of targeted and variable sprayer for the potato. Agriculture 2023, 13, 797. [Google Scholar] [CrossRef]
- Zheng, K.; Zhao, X.; Han, C.; He, Y.; Zhai, C.; Zhao, C. Design and experiment of an automatic row-oriented spraying system based on machine vision for early-stage maize crops. Agriculture 2023, 13, 691. [Google Scholar] [CrossRef]
- Foqué, D.; Pieters, J.G.; Nuyttens, D. Spray deposition and distribution in a bay laurel crop as affected by nozzle type, air assistance and spray direction when using vertical spray booms. Crop Prot. 2012, 41, 77–87. [Google Scholar] [CrossRef]
- Hong, S.-W.; Zhao, L.; Zhu, H. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Comput. Electron. Agric. 2018, 149, 121–132. [Google Scholar] [CrossRef]
- Dai, S.; Ou, M.; Du, W.; Yang, X.; Dong, X.; Jiang, L.; Zhang, T.; Ding, S.; Jia, W. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Front. Plant Sci. 2023, 14, 1184244. [Google Scholar] [CrossRef]
- Xun, L.; Campos, J.; Salas, B.; Fabregas, F.X.; Zhu, H.; Gil, E. Advanced spraying systems to improve pesticide saving and reduce spray drift for apple orchards. Precision Agric. 2023, 24, 1526–1546. [Google Scholar] [CrossRef]
- Dowlati, M.; Khoshnam, F.; Namjoo, M.; Mirshahi, E. Analysis of nozzle spray distribution for different nozzle height and pressure. AgricEngInt CIGR J. Open 2022, 24, 61–67. [Google Scholar]
- Regulation of the Minister of Agriculture and Rural Development of 31 December 2013 on the Technical Condition of Equipment for Applying Crop Protection Agents. Journal of Laws of the Republic of Poland, No. 1742. 2013; (In Polish). Available online: https://dziennikustaw.gov.pl/D2013000174201.pdf (accessed on 15 July 2024).
- ISO 16122; Agricultural and Forestry Machinery—Inspection of Sprayers in Use—Part 2: Horizontal Boom Sprayers. ISO: Geneva, Switzerland, 2015.
- Subr, A.; Milanowski, M.; Parafiniuk, S.; Sawa, J. Testing the uniformity of spray distribution under different application parameters. In Proceedings of the IX International Scientific Symposium “Farm Machinery and Processes Management in Sustainable Agriculture”, Lublin, Poland, 22–24 November 2017; pp. 359–364. Available online: https://open.icm.edu.pl/handle/123456789/14771 (accessed on 15 July 2024).
- Dash, B.S.; Kumar, A.; Modi, R.U.; Namdev, S.K. Design and performance evaluation of self-propelled intra-canopy boom spraying system. J. Agric. Eng. 2020, 57, 195–209. [Google Scholar]
- Zhang, Z.; Zhu, H.; Salcedo, R.; Wei, Z. Assessment of chemical concentration accuracy and mixture uniformity of premixing in-line injection system. Comput. Electron. Agric. 2020, 176, 105670. [Google Scholar] [CrossRef]
- Griesang, F.; Spadoni, A.B.D.; Ferreira, P.H.U.; da Costa Ferreira, M. Effect of working pressure and spacing of nozzles on the quality of spraying distribution. Crop Prot. 2022, 151, 105818. [Google Scholar] [CrossRef]
- Sobieski, W.; Trykozko, A. Darcy’s and Forchheimer’s laws in practice—Part 1: The experiment. Tech. Sci. 2014, 17, 321–335. [Google Scholar]
- Pietkiewicz, P.; Miąskowski, W.; Nalepa, K.; Leszczyński, P. Analysis of pressure distribution and velocity in the line with changing cross section. Mechanik 2015, 88, 663–670. [Google Scholar] [CrossRef]
- Gupta, P.; Sirohi, N.P.S.; Mishra, I.M. Air flow characteristics of an air-assisted sprayer through horizontal crop canopy. Int. J. Agric. Biol. Eng. 2012, 5, 1. [Google Scholar] [CrossRef]
- Gupta, P.; Sirohi, N.P.; Kashyap, P.S. Effect of nozzle pressure, air speed, leaf area density and forward speed on spray deposition in simulated crop canopy. Ann. Hortic. 2011, 4, 72–77. [Google Scholar]
- Salas, B.; Salcedo, R.; Garcia-Ruiz, F.; Gil, E. Design, implementation and validation of a sensor-based precise airblast sprayer to improve pesticide applications in orchards. Precision Agric. 2024, 25, 865–888. [Google Scholar] [CrossRef]
- Chen, P.; Douzals, J.P.; Lan, Y.; Cotteux, E.; Delpuech, X.; Pouxviel, G.; Zhan, Y. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Front. Plant Sci. 2022, 13, 870956. [Google Scholar] [CrossRef]
- Salcedo, R.; Garcera, C.; Granell, R.; Molto, E.; Chueca, P. Description of the airflow produced by an air assisted sprayer during pesticide applications to citrus. Span. J. Agric. Res. 2015, 13, e0208. [Google Scholar] [CrossRef]
Parameter | Source of Variation | Airflow Velocity (m s–1) | |
---|---|---|---|
Fan Drive in First Gear | Fan Drive in Second Gear | ||
Diffuser height (cm)—A | 10 | 19.36 ± 6.45 a | 22.59 ± 7.14 a |
20 | 14.80 ± 3.71 b | 17.14 ± 4.73 b | |
30 | 11.67 ± 2.40 c | 13.13 ± 2.97 c | |
40 | 9.06 ± 1.61 cd | 10.98 ± 1.86 c | |
50 | 8.06 ± 1.47 d | 10.06 ± 1.80 c | |
p-Value | <0.001 | <0.001 | |
Position of diffuser relative to the sprayer’s axis of symmetry—B | 10 | 14.63 ± 5.59 a | 17.08 ± 6.18 a |
20 | 12.71 ± 4.77 a | 15.50 ± 5.99 ab | |
30 | 11.25 ± 7.18 a | 12.42 ± 7.51 ab | |
40 | 12.41 ± 4.19 a | 14.82 ± 5.12 ab | |
50 | 11.61 ± 4.45 a | 13.71 ± 4.91 b | |
p-Value | 0.151 | 0.048 | |
Side of the sprayer boom—C | data | 11.24 ± 4.82 b | 13.24 ± 5.83 b |
data | 13.96 ± 5.75 a | 16.32 ± 6.25 a | |
p-Value | 0.011 | 0.003 | |
A × B | p-Value | 0.848 | 0.796 |
A × C | p-Value | 0.002 | 0.020 |
B × C | p-Value | 0.003 | 0.002 |
A × B × C | p-Value | <0.001 | <0.001 |
Diffuser Height (cm) | Distance from the Diffuser Axis (cm) | Airflow Velocity (m s–1) | |||||
---|---|---|---|---|---|---|---|
Fan Drive in First Gear/Diffuser Spacing (cm) | Fan Drive in Second Gear/Diffuser Spacing (cm) | ||||||
90 | 80 | 60 | 90 | 80 | 60 | ||
10 | 0 | 21.54 ± 2.73 ab | 19.29 ± 6.44 a | 21.89 ± 4.53 a | 25.85 ± 4.55 a | 22.84 ± 6.76 a | 24.64 ± 7.34 a |
5 | 22.80 ± 2.44 a | 17.66 ± 7.76 a | 20.54 ± 5.86 a | 26.94 ± 3.05 a | 20.27 ± 8.32 ab | 24.79 ± 7.42 a | |
10 | 22.48 ± 2.72 a | 16.98 ± 8.56 ab | 19.16 ± 4.40 a | 26.68 ± 4.36 a | 19.59 ± 9.57 ab | 23.90 ± 6.66 a | |
15 | 20.48 ± 5.36 ab | 15.63 ± 8.47 ab | 16.30 ± 1.37 ab | 26.25 ± 4.08 a | 18.85 ± 9.60 ab | 23.84 ± 6.19 a | |
20 | 12.51 ± 12.08 abc | 13.11 ± 7.84 abc | 8.21 ± 8.46 bc | 18.96 ± 11.33 ab | 15.53 ± 10.07 abc | 18.34 ± 2.62 abc | |
25 | 12.47 ± 12.15 abc | 11.78 ± 8.86 abc | 10.37 ± 8.75 bc | 10.81 ± 12.22 bc | 13.53 ± 10.56 abc | 10.24 ± 6.29 bc | |
30 | 6.46 ± 6.66 bc | 7.66 ± 7.36 bc | 7.62 ± 2.34 c | 5.81 ± 6.88 bc | 10.33 ± 9.37 bc | 5.42 ± 3.56 c | |
35 | 1.78 ± 0.28 c | 4.31 ± 5.71 c | – | 2.29 ± 0.33 c | 4.45 ± 6.33 c | – | |
40 | 2.00 ± 0.19 c | 2.55 ± 1.70 c | – | 2.07 ± 0.32 c | 5.87 ± 7.97 bc | – | |
45 | 1.95 ± 0.02 c | – | – | 2.05 ± 0.03 c | – | – | |
20 | 0 | 16.68 ± 2.60 a | 14.15 ± 3.93 a | 18.65 ± 1.06 a | 19.42 ± 3.68 a | 16.32 ± 4.70 a | 21.65 ± 2.91 a |
5 | 16.27 ± 2.74 a | 13.60 ± 3.87 a | 17.74 ± 0.92 a | 18.49 ± 2.70 ab | 15.82 ± 5.21 ab | 21.11 ± 3.79 a | |
10 | 16.31 ± 2.99 a | 12.88 ± 5.16 a | 16.16 ± 0.62 ab | 19.17 ± 3.12 a | 16.07 ± 5.14 ab | 19.19 ± 1.48 a | |
15 | 16.04 ± 3.20 a | 12.39 ± 5.23 ab | 16.84 ± 2.46 ab | 19.48 ± 2.55 a | 14.78 ± 6.65 ab | 19.86 ± 0.60 a | |
20 | 13.64 ± 3.57 ab | 11.62 ± 5.20 ab | 17.51 ± 1.75 a | 18.12 ± 4.76 ab | 13.97 ± 6.57 ab | 19.62 ± 0.72 a | |
25 | 10.40 ± 7.22 abc | 10.45 ± 5.20 ab | 10.78 ± 5.01 bc | 10.67 ± 9.70 abc | 12.03 ± 7.18 ab | 12.09 ± 3.63 b | |
30 | 9.22 ± 8.54 abc | 10.10 ± 5.70 ab | 7.92 ± 2.34 c | 9.75 ± 8.23 abc | 10.60 ± 7.16 ab | 12.26 ± 1.64 b | |
35 | 4.61 ± 4.41 bc | 6.02 ± 4.46 b | – | 3.88 ± 4.01 bc | 7.97 ± 5.83 ab | – | |
40 | 1.84 ± 0.29 c | 5.54 ± 5.08 b | – | 1.94 ± 0.30 c | 6.05 ± 5.88 b | – | |
45 | 1.53 ± 0.35 c | – | – | 1.60 ± 0.08 c | – | – | |
30 | 0 | 12.08 ± 1.42 a | 10.96 ± 2.10 a | 14.96 ± 1.89 a | 11.19 ± 2.38 ab | 12.53 ± 2.64 a | 11.55 ± 4.38 a |
5 | 12.70 ± 1.69 a | 10.88 ± 2.36 a | 13.87 ± 2.24 a | 14.89 ± 2.46 a | 12.87 ± 3.33 a | 15.16 ± 2.78 a | |
10 | 13.35 ± 2.17 a | 10.86 ± 2.19 a | 12.31 ± 0.98 a | 15.15 ± 2.78 a | 12.47 ± 3.16 a | 11.53 ± 3.67 a | |
15 | 13.18 ± 2.61 a | 10.15 ± 2.85 a | 14.31 ± 0.49 a | 14.63 ± 2.88 a | 11.89 ± 3.63 a | 14.99 ± 0.81 a | |
20 | 12.83 ± 2.58 a | 10.37 ± 2.50 a | 14.57 ± 0.62 a | 13.58 ± 3.06 a | 11.78 ± 4.31 a | 15.33 ± 0.60 a | |
25 | 11.63 ± 5.29 a | 9.84 ± 3.63 a | 13.77 ± 1.29 a | 12.30 ± 4.50 ab | 11.59 ± 4.19 a | 11.99 ± 3.40 a | |
30 | 9.27 ± 4.91 a | 9.06 ± 3.03 a | 15.74 ± 0.72 a | 8.96 ± 7.61 ab | 10.87 ± 4.23 a | 13.31 ± 0.95 a | |
35 | 5.48 ± 4.95 ab | 8.17 ± 4.03 a | – | 6.61 ± 6.51 ab | 10.62 ± 4.70 a | – | |
40 | 5.72 ± 5.43 ab | 8.69 ± 4.05 a | – | 2.82 ± 1.73 b | 9.84 ± 5.73 a | – | |
45 | 4.08 ± 1.83 b | – | – | 2.18 ± 0.48 b | – | – | |
40 | 0 | 9.61 ± 0.58 a | 8.56 ± 1.43 a | 10.35 ± 1.63 a | 12.26 ± 0.27 a | 10.70 ± 1.97 a | 12.86 ± 0.57 a |
5 | 9.11 ± 2.51 a | 9.03 ± 1.46 a | 9.94 ± 1.93 a | 12.25 ± 1.30 a | 10.31 ± 1.70 a | 11.73 ± 2.88 a | |
10 | 10.41 ± 0.99 a | 8.69 ± 1.71 a | 9.61 ± 1.86 a | 12.75 ± 1.96 a | 11.13 ± 2.02 a | 12.08 ± 2.47 a | |
15 | 10.44 ± 1.56 a | 8.88 ± 1.59 a | 11.67 ± 2.06 a | 11.86 ± 1.56 a | 10.79 ± 1.68 a | 12.58 ± 7.06 a | |
20 | 11.38 ± 1.22 a | 8.83 ± 1.79 a | 11.79 ± 1.36 a | 13.39 ± 2.22 a | 9.77 ± 2.01 a | 14.82 ± 3.64 a | |
25 | 8.15 ± 4.82 a | 9.13 ± 2.03 a | 12.53 ± 0.35 a | 11.50 ± 3.41 a | 10.41 ± 2.47 a | 13.35 ± 0.98 a | |
30 | 6.57 ± 5.73 a | 8.81 ± 2.03 a | 10.80 ± 0.89 a | 7.73 ± 5.23 a | 10.65 ± 2.55 a | 10.03 ± 4.27 a | |
35 | 6.67 ± 5.77 a | 8.45 ± 2.01 a | – | 7.56 ± 6.72 a | 10.76 ± 2.15 a | – | |
40 | 5.71 ± 3.67 a | 8.31 ± 2.80 a | – | 8.14 ± 6.17 a | 9.95 ± 2.45 a | – | |
45 | 6.34 ± 0.41 a | – | – | 10.47 ± 2.52 a | – | – | |
50 | 0 | 8.76 ± 0.97 a | 7.99 ± 1.22 a | 8.63 ± 1.51 a | 10.78 ± 1.70 a | 9.38 ± 1.16 a | 10.98 ± 2.92 a |
5 | 8.10 ± 2.14 a | 7.97 ± 1.03 a | 8.17 ± 4.45 a | 11.42 ± 0.90 a | 9.48 ± 1.73 a | 12.61 ± 2.04 a | |
10 | 8.69 ± 1.80 a | 8.23 ± 1.23 a | 9.12 ± 3.51 a | 11.62 ± 0.83 a | 9.80 ± 1.58 a | 11.03 ± 4.91 a | |
15 | 9.40 ± 1.30 a | 8.12 ± 1.01 a | 8.24 ± 5.94 a | 11.42 ± 1.23 a | 9.37 ± 1.18 a | 11.66 ± 4.67 a | |
20 | 9.85 ± 1.35 a | 8.30 ± 1.10 a | 10.31 ± 3.36 a | 11.50 ± 0.98 a | 9.94 ± 1.09 a | 12.91 ± 2.84 a | |
25 | 8.38 ± 0.96 a | 7.66 ± 1.52 a | 8.98 ± 4.90 a | 10.83 ± 1.96 a | 10.29 ± 1.64 a | 12.82 ± 2.80 a | |
30 | 7.98 ± 1.55 a | 7.83 ± 1.47 a | 9.11 ± 2.56 a | 9.81 ± 1.50 a | 9.62 ± 1.80 a | 13.22 ± 1.47 a | |
35 | 5.77 ± 3.60 a | 8.20 ± 1.76 a | – | 7.81 ± 3.47 a | 9.33 ± 2.06 a | – | |
40 | 6.03 ± 3.30 a | 7.75 ± 1.86 a | – | 9.78 ± 3.51 a | 10.43 ± 1.86 a | – | |
45 | 6.98 ± 3.92 a | – | – | 10.44 ± 3.74 a | – | – |
Type of Nozzle | Number of Nozzles | Boom Configuration | Measurement | Entire Sprayer Boom | Boom Segments with Nozzles Spaced 80 cm Apart | ||
---|---|---|---|---|---|---|---|
u (%) | CV (%) | u (%) | CV (%) | ||||
Lechler 110-03 flat-fan nozzle | 1 Nozzle | Without an SAB | 1 | 51.3 | 22.5 | 65.3 | 20.3 |
2 | 53.8 | 23.4 | 59.2 | 19.5 | |||
3 | 52.3 | 23.4 | 59.2 | 19.6 | |||
Average | 52.5 ± 1.3 cA | 23.1 ± 0.5 fB | 61.2 ± 3.5 eB | 19.8 ± 0.4 efA | |||
With an SAB (fan in first gear) | 1 | 42.5 | 26.6 | 44.9 | 18.7 | ||
2 | 47.5 | 26.6 | 30.6 | 18.6 | |||
3 | 38.8 | 26.2 | 42.8 | 18.2 | |||
Average | 42.9 ± 4.4 bA | 26.5 ± 0.2 gB | 39.4 ± 7.7 bcA | 18.5 ± 0.3 dA | |||
With an SAB (fan in second gear) | 1 | 61.3 | 28.8 | 53.1 | 20.7 | ||
2 | 56.3 | 29.0 | 49.0 | 20.7 | |||
3 | 52.5 | 29.1 | 46.9 | 21.0 | |||
Average | 56.7 ± 4.4 cA | 29.0 ± 0.2 hB | 49.7 ± 3.2 cdA | 20.8 ± 0.2 fA | |||
2 Nozzles | Without an SAB | 1 | 51.3 | 18.4 | 44.9 | 17.1 | |
2 | 51.3 | 18.8 | 49.0 | 17.5 | |||
3 | 50.0 | 18.9 | 49.0 | 17.7 | |||
Average | 50.9 ± 0.8 cA | 18.7 ± 0.3 bB | 47.6 ± 2.4 bcdA | 17.4 ± 0.3 cA | |||
With an SAB (fan in first gear) | 1 | 52.5 | 20.7 | 36.7 | 16.0 | ||
2 | 50.0 | 20.6 | 36.7 | 16.4 | |||
3 | 51.3 | 20.6 | 38.8 | 17.0 | |||
Average | 51.3 ± 1.3 cB | 20.6 ± 0.1 cB | 37.4 ± 1.2 bA | 16.5 ± 0.5 bcA | |||
With an SAB (fan in second gear) | 1 | 66.3 | 23.3 | 57.1 | 19.4 | ||
2 | 65.0 | 23.2 | 53.1 | 19.3 | |||
3 | 63.8 | 23.0 | 55.1 | 19.1 | |||
Average | 65.0 ± 1.3 dB | 23.2 ± 0.2 fB | 55.1 ± 2.0 deA | 19.3 ± 0.2 deA | |||
Lechler TR 80-03C hollow-cone nozzle | 2 Nozzles | Without an SAB | 1 | 15.0 | 15.6 | 10.2 | 8.8 |
2 | 21.3 | 16.1 | 6.1 | 9.0 | |||
3 | 21.3 | 16.2 | 8.2 | 8.5 | |||
Average | 19.2 ± 3.6 aB | 16.0 ± 0.3 aB | 8.2 ± 2.1 aA | 8.8 ± 0.3 aA | |||
With an SAB (fan in first gear) | 1 | 45.0 | 21.6 | 34.7 | 16.5 | ||
2 | 42.5 | 21.7 | 38.8 | 16.7 | |||
3 | 42.5 | 21.2 | 38.8 | 15.9 | |||
Average | 43.3 ± 1.4 bB | 21.5 ± 0.3 dB | 37.4 ± 2.4 bA | 16.4 ± 0.4 bA | |||
With an SAB (fan in second gear) | 1 | 50.0 | 22.2 | 46.9 | 20.1 | ||
2 | 51.3 | 22.2 | 40.8 | 19.2 | |||
3 | 51.3 | 22.4 | 40.8 | 19.2 | |||
Average | 50.9 ± 0.8 cB | 22.3 ± 0.1 eB | 42.8 ± 3.5 bcA | 19.5 ± 0.5 deA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowski, P.; Kaliniewicz, Z.; Lipiński, A.; Lipiński, S.; Burg, P.; Mašán, V. Horizontal Distribution of Liquid in an Over-Row Sprayer with a Secondary Air Blower. Appl. Sci. 2024, 14, 9036. https://doi.org/10.3390/app14199036
Markowski P, Kaliniewicz Z, Lipiński A, Lipiński S, Burg P, Mašán V. Horizontal Distribution of Liquid in an Over-Row Sprayer with a Secondary Air Blower. Applied Sciences. 2024; 14(19):9036. https://doi.org/10.3390/app14199036
Chicago/Turabian StyleMarkowski, Piotr, Zdzisław Kaliniewicz, Adam Lipiński, Seweryn Lipiński, Patrik Burg, and Vladimír Mašán. 2024. "Horizontal Distribution of Liquid in an Over-Row Sprayer with a Secondary Air Blower" Applied Sciences 14, no. 19: 9036. https://doi.org/10.3390/app14199036
APA StyleMarkowski, P., Kaliniewicz, Z., Lipiński, A., Lipiński, S., Burg, P., & Mašán, V. (2024). Horizontal Distribution of Liquid in an Over-Row Sprayer with a Secondary Air Blower. Applied Sciences, 14(19), 9036. https://doi.org/10.3390/app14199036