Effects of Treadmill Inclination and Load Position on Gait Parameters while Carrying a Backpack Asymmetrically
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation and Testing Procedures
2.3. Data Analysis
- Normalized Step Length [%] [28]:
- Step length [cm]: The distance between the point of heel contact of one foot and the point of a successive heel contact of the contralateral foot [2];
- Stance phase [% of gait cycle]: the heel-to-toe contact sequence of the foot [2];
- Swing phase [% of gait cycle]: the foot is suspended and proceeds in the air [2];
- Double support [% of gait cycle]: period of time when both feet touch the ground [2];
- Single support [% of gait cycle]: the time during which the entire plantar aspect of the weight-bearing foot has contact with the ground [2];
- Cadence [steps/min]: rhythm expressed in steps per minute [2];
- Gait cycle [s]: time between the first contact of two consecutive steps of the same foot [2].
2.4. Statistical Analysis
3. Results
3.1. Incline Effect
3.2. Load Position Effect
3.3. Inclination and Load Position Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, D.; Lim, J.; Rha, D.W. Analysis of Gait Adaptation Pattern According to the Change of Slope Angle during Walking in Young Non-Disabled Adults. Gait Posture 2020, 81, 257–258. [Google Scholar] [CrossRef]
- Mandalidis, D.; Kafetzakis, I. Differences between Systems Using Optical and Capacitive Sensors in Treadmill-Based Spatiotemporal Analysis of Level and Sloping Gait. Sensors 2022, 22, 2790. [Google Scholar] [CrossRef] [PubMed]
- Strutzenberger, G.; Leutgeb, L.; Claußen, L.; Schwameder, H. Gait on Slopes: Differences in Temporo-Spatial, Kinematic and Kinetic Gait Parameters between Walking on a Ramp and on a Treadmill. Gait Posture 2022, 91, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Abdul Yamin, N.A.A.; Basaruddin, K.S.; Abu Bakar, S.; Salleh, A.F.; Mat Som, M.H.; Yazid, H.; Hoang, T.-D. Quantification of Gait Stability During Incline and Decline Walking: The Responses of Required Coefficient of Friction and Dynamic Postural Index. J. Healthc. Eng. 2022, 2022, 7716821. [Google Scholar] [CrossRef]
- Yamin, N.A.A.A.; Basaruddin, K.S.; Ijaz, M.F.; Mat Som, M.H.; Shahrol Aman, M.N.S.; Takemura, H. Correlation between Postural Stability and Lower Extremity Joint Reaction Forces in Young Adults during Incline and Decline Walking. Appl. Sci. 2023, 13, 13246. [Google Scholar] [CrossRef]
- Kimel-Naor, S.; Gottlieb, A.; Plotnik, M. The Effect of Uphill and Downhill Walking on Gait Parameters: A Self-Paced Treadmill Study. J. Biomech. 2017, 60, 142–149. [Google Scholar] [CrossRef]
- Hong, Y.; Cheung, C.-K. Gait and Posture Responses to Backpack Load during Level Walking in Children. Gait Posture 2003, 17, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, J.-X.; Fong, D.T.-P. Effect of Prolonged Walking with Backpack Loads on Trunk Muscle Activity and Fatigue in Children. J. Electromyogr. Kinesiol. 2008, 18, 990–996. [Google Scholar] [CrossRef]
- Alamoudi, M.; Travascio, F.; Onar-Thomas, A.; Eltoukhy, M.; Asfour, S. The Effects of Different Carrying Methods on Locomotion Stability, Gait Spatio-Temporal Parameters and Spinal Stresses. Int. J. Ind. Ergon. 2018, 67, 81–88. [Google Scholar] [CrossRef]
- Wang, J.; Stephenson, M.L.; Hass, C.J.; Janelle, C.M.; Tillman, M.D. Carrying Asymmetric Loads While Walking on a Treadmill Interferes with Lower Limb Coordination. Int. J. Environ. Res. Public Health 2021, 18, 4549. [Google Scholar] [CrossRef] [PubMed]
- Zwick, D.; Czajkowski, R.; Dhage, A.; Larina, L.; Montgomery, K.; Nelson, A.J. The Effects of Asymmetric Load Carrying on Selected Parameters of Gait. J. Back Musculoskelet. Rehabil. 1998, 10, 61–68. [Google Scholar] [CrossRef]
- Liew, B.; Morris, S.; Netto, K. The Effect of Backpack Carriage on the Biomechanics of Walking: A Systematic Review and Preliminary Meta-Analysis. J. Appl. Biomech. 2016, 32, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Zawadka, M.; Kochman, M.; Jablonski, M.; Gawda, P. Effects of External Light Load on Posture and Foot Pressure Distribution in Young Adults: A Pilot Study. Int. J. Ind. Ergon. 2021, 82, 103102. [Google Scholar] [CrossRef]
- Suri, C.; Shojaei, I.; Bazrgari, B. Effects of School Backpacks on Spine Biomechanics During Daily Activities: A Narrative Review of Literature. Hum. Factors 2020, 62, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Heuscher, Z.; Gilkey, D.P.; Peel, J.L.; Kennedy, C.A. The Association of Self-Reported Backpack Use and Backpack Weight With Low Back Pain Among College Students. J. Manip. Physiol. Ther. 2010, 33, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Walicka-Cupryś, K.; Skalska-Izdebska, R.; Rachwał, M.; Truszczyńska, A. Influence of the Weight of a School Backpack on Spinal Curvature in the Sagittal Plane of Seven-Year-Old Children. BioMed Res. Int. 2015, 2015, 817913. [Google Scholar] [CrossRef] [PubMed]
- Berceanu, C.; Marghitu, D.B.; Gudavalli, M.R.; Raju, P.K.; Vikas, Y. Gait Analysis Parameters of Healthy Human Subjects with Asymmetric Loads. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 855–863. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Magnani, R.M.; Lehnen, G.C.; Souza, G.S.D.S.E.; Andrade, A.O.; Vieira, M.F. Effects of Backpack Load and Positioning on Nonlinear Gait Features in Young Adults. Ergonomics 2018, 61, 720–728. [Google Scholar] [CrossRef]
- Zawadka, M.; Smołka, J.; Skublewska-Paszkowska, M.; Łukasik, E.; Zieliński, G.; Byś, A.; Gawda, P. Altered Squat Movement Pattern in Patients with Chronic Low Back Pain. Ann. Agric. Environ. Med. 2020, 28, 158–162. [Google Scholar] [CrossRef]
- Healy, A.; Linyard-Tough, K.; Chockalingam, N. Agreement Between the Spatiotemporal Gait Parameters of Healthy Adults From the OptoGait System and a Traditional Three-Dimensional Motion Capture System. J. Biomech. Eng. 2019, 141, 014501. [Google Scholar] [CrossRef]
- Demirel, A.; Onan, D.; Oz, M.; Ozel Aslıyuce, Y.; Ulger, O. Moderate Disability Has Negative Effect on Spatiotemporal Parameters in Patients with Chronic Low Back Pain. Gait Posture 2020, 79, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. International Physical Activity Questionnaire (IPAQ)–Polish Version. Phys. Educ. Sport 2007, 51, 47–54. [Google Scholar]
- Zawadka, M.; Smołka, J.; Skublewska-Paszkowska, M.; Łukasik, E.; Zieliński, G.; Gawda, P. Relationship of Lumbar-Hip Kinematics during Trunk Flexion and Sex, Body Mass Index, and Self-Reported Energy Expenditure: A Cross-Sectional Analysis. Acta Bioeng. Biomech. 2023, 25, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Devroey, C.; Jonkers, I.; de Becker, A.; Lenaerts, G.; Spaepen, A. Evaluation of the Effect of Backpack Load and Position during Standing and Walking Using Biomechanical, Physiological and Subjective Measures. Ergonomics 2007, 50, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Campagnini, S.; Pasquini, G.; Schlechtriem, F.; Fransvea, G.; Simoni, L.; Gerli, F.; Magaldi, F.; Cristella, G.; Riener, R.; Carrozza, M.C.; et al. Estimation of Spatiotemporal Gait Parameters in Walking on a Photoelectric System: Validation on Healthy Children by Standard Gait Analysis. Sensors 2023, 23, 6059. [Google Scholar] [CrossRef] [PubMed]
- Carbajales-Lopez, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Benito-De Pedro, M.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; San Antolín, M. The OptoGait Motion Analysis System for Clinical Assessment of 2D Spatio-Temporal Gait Parameters in Young Adults: A Reliability and Repeatability Observational Study. Appl. Sci. 2020, 10, 3726. [Google Scholar] [CrossRef]
- Castro-Méndez, A.; Requelo-Rodríguez, I.; Pabón-Carrasco, M.; González-Elena, M.L.; Ponce-Blandón, J.A.; Palomo-Toucedo, I.C. A Case–Control Study of the Effects of Chronic Low Back Pain in Spatiotemporal Gait Parameters. Sensors 2021, 21, 5247. [Google Scholar] [CrossRef]
- Bytyçi, I.; Henein, M.Y. Stride Length Predicts Adverse Clinical Events in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2670. [Google Scholar] [CrossRef]
- Zieliński, G.; Gawda, P. Analysis of the Use of Sample Size and Effect Size Calculations in a Temporomandibular Disorders Randomised Controlled Trial—Short Narrative Review. J. Pers. Med. 2024, 14, 655. [Google Scholar] [CrossRef]
- McIntosh, A.S.; Beatty, K.T.; Dwan, L.N.; Vickers, D.R. Gait Dynamics on an Inclined Walkway. J. Biomech. 2006, 39, 2491–2502. [Google Scholar] [CrossRef]
- Mexi, A.; Kafetzakis, I.; Korontzi, M.; Karagiannakis, D.; Kalatzis, P.; Mandalidis, D. Effects of Load Carriage on Postural Control and Spatiotemporal Gait Parameters during Level and Uphill Walking. Sensors 2023, 23, 609. [Google Scholar] [CrossRef] [PubMed]
- Chow, D.H.K.; Kwok, M.L.Y.; Au-Yang, A.C.K.; Holmes, A.D.; Cheng, J.C.Y.; Yao, F.Y.D.; Wong, M.S. The Effect of Backpack Load on the Gait of Normal Adolescent Girls. Ergonomics 2005, 48, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.N.; Barbosa, T.M. The Effects of Backpack Carriage on Gait Kinematics and Kinetics of Schoolchildren. Sci. Rep. 2019, 9, 3364. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Koh, M. Effects of Backpack Load Position on Spatiotemporal Parameters and Trunk Forward Lean. Gait Posture 2009, 29, 49–53. [Google Scholar] [CrossRef]
- Zawadka, M.; Kochman, M.; Sobiech, M.; Jabłoński, M. External Load Application In Gait And Posture Reeducation After Diffuse Axonal Injury Of The Corpus Callosum. A Case Report. J. Educ. Health Sport 2018, 8, 24–33. [Google Scholar] [CrossRef]
- Musgjerd, T.; Anason, J.; Rutherford, D.; Kernozek, T.W. Effect of Increasing Running Cadence on Peak Impact Force in an Outdoor Environment. Int. J. Sports Phys. Ther. 2021, 16, 1076–1083. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Ferrigno, C.; Moazen, M.; Wimmer, M.A. From Normal to Fast Walking: Impact of Cadence and Stride Length on Lower Extremity Joint Moments. Gait Posture 2016, 46, 118–125. [Google Scholar] [CrossRef]
- Graber, K.A.; Loverro, K.L.; Baldwin, M.; Nelson-Wong, E.; Tanor, J.; Lewis, C.L. Hip and Trunk Muscle Activity and Mechanics During Walking With and Without Unilateral Weight. J. Appl. Biomech. 2021, 37, 351–358. [Google Scholar] [CrossRef]
- Latt, M.D.; Menz, H.B.; Fung, V.S.; Lord, S.R. Walking Speed, Cadence and Step Length Are Selected to Optimize the Stability of Head and Pelvis Accelerations. Exp. Brain Res. 2008, 184, 201–209. [Google Scholar] [CrossRef]
- Williams, D.S.; Martin, A.E. Gait Modification When Decreasing Double Support Percentage. J. Biomech. 2019, 92, 76–83. [Google Scholar] [CrossRef]
- Abaraogu, U.O.; Ugwa, W.O.; Onwuka, E.; Orji, E. Effect of Single and Double Backpack Strap Loading on Gait and Perceived Exertion of Young Adults. J. Back Musculoskelet. Rehabil. 2016, 29, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, P.G.; Ciriello, V.M.; Maikala, R.V.; O’Brien, N.V. Oxygen Consumption Prediction Models for Individual and Combination Materials Handling Tasks. Ergonomics 2008, 51, 1776–1789. [Google Scholar] [CrossRef] [PubMed]
- Korovessis, P.; Koureas, G.; Zacharatos, S.; Papazisis, Z. Backpacks, Back Pain, Sagittal Spinal Curves and Trunk Alignment in Adolescents: A Logistic and Multinomial Logistic Analysis. Spine 2005, 30, 247–255. [Google Scholar] [CrossRef] [PubMed]
Variable | Males | Females | Statistics | |||
---|---|---|---|---|---|---|
M | SD | M | SD | Z | p | |
Age [years] | 22.58 | 1.46 | 22.50 | 1.50 | 0.29 | 0.77 |
Height [m] | 1.77 | 0.08 | 1.70 | 0.05 | 3.29 | 0.001 * |
Body mass [kg] | 80.26 | 14.23 | 62.55 | 12.73 | 3.69 | <0.001 * |
BMI [kg/m2] | 25.41 | 3.53 | 21.72 | 4.89 | 3.02 | <0.001 * |
Intensive PA [METmin/week] | 884.44 | 1042.88 | 308.57 | 526.60 | 1.76 | 0.08 |
Moderate PA [METmin/week] | 644.44 | 625.10 | 907.81 | 1372.30 | 0.06 | 0.95 |
Walking [METmin/week] | 1445.92 | 1548.41 | 1132.21 | 1123.07 | 0.89 | 0.37 |
Sitting [min/day] | 285.56 | 137.98 | 293.50 | 140.46 | −0.38 | 0.70 |
Preferred gait speed [km/h] | 3.78 | 0.79 | 3.35 | 0.89 | 1.38 | 0.17 |
Main Effect | Test | λ Value | F | Effect df | p |
---|---|---|---|---|---|
Incline | Wilks | 0.15 | 27.43 | 7 | <0.001 * |
Load position | Wilks | 0.16 | 10.27 | 14 | <0.001 * |
Side | Wilks | 0.77 | 1.46 | 7 | 0.21 |
Interaction | |||||
Incline × oad | Wilks | 0.33 | 3.93 | 14 | 0.001 * |
Incline × Side | Wilks | 0.82 | 1.09 | 7 | 0.39 |
Load × Side | Wilks | 0.58 | 1.43 | 14 | 0.21 |
Incline × Load × Side | Wilks | 0.56 | 1.54 | 14 | 0.16 |
Parameter | Backpack in Hand | Backpack on Shoulder | Without Backpack (Control Trial) |
---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |
Norm. Step Length [%] | |||
Unloaded Side | 30.68 (29.13, 32.23) | 31.17 (29.58, 32.76) | 31.20 (29.66, 32.73) |
Loaded Side | 30.80 (29.24, 32.37) | 31.46 (29.86, 33.07) | 31.29 (29.62, 32.97) |
Stance Phase [%] | |||
Unloaded Side | 67.81 (67.04, 68.58) | 68.57 (67.79, 69.35) | 67.40 (66.55, 68.25) |
Loaded Side | 67.92 (67.13, 68.71) | 68.41 67.58, 69.23 | 67.46 (66.64, 68.28) |
Swing Phase [%] | |||
Unloaded Side | 32.18 (31.39, 32.96) | 31.43 (30.65, 32.22) | 32.60 (31.75, 33.45) |
Loaded Side | 32.08 (31.29, 32.87) | 31.59 (30.77, 32.42) | 32.54 (31.72, 33.36) |
Single Support [%] | |||
Unloaded Side | 31.89 (31.05, 32.73) | 31.70 (30.87, 32.52) | 32.56 (31.73, 33.38) |
Loaded Side | 32.28 (31.52, 33.03) | 31.80 (30.97, 32.63) | 32.60 (31.75, 33.45) |
Double Support [%] | |||
Unloaded Side | 35.96 (34.38, 37.53) | 36.88 (35.31, 38.44) | 34.85 (33.21, 36.49) |
Loaded Side | 35.65 (34.16, 37.14) | 36.62 (35.02, 38.22) | 34.87 (33.24, 36.50) |
Gait Cycle [s] | |||
Unloaded Side | 1.10 (1.05, 1.14) | 1.12 (1.08, 1.16) | 1.12 (1.08, 1.16) |
Loaded Side | 1.09 (1.05, 1.13) | 1.12 (1.08, 1.16) | 1.12 (1.08, 1.16) |
Cadence [step/min] | |||
Unloaded Side | 111.16 (107.04, 115.28) | 108.69 (104.85, 112.52) | 108.35 (104.64, 112.05) |
Loaded Side | 111.05 (107.19, 114.92) | 108.64 (104.87, 112.41) | 108.36 (104.66, 112.06) |
Parameter | Backpack in Hand | Backpack on Shoulder | Without Backpack (Control Trial) |
---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |
Norm. Step Length [%] | |||
Unloaded Side | 31.24 (29.73, 32.76) | 31.39 (29.86, 32.92) | 31.46 (29.90, 33.03) |
Loaded Side | 31.29 (29.65, 32.93) | 31.49 (29.91, 33.07) | 31.66 (30.05, 33.27) |
Stance Phase [%] | |||
Unloaded Side | 69.86 (69.15, 70.58) | 70.15 (69.44, 70.86) | 68.63 (67.84, 69.42) |
Loaded Side | 69.85 (69.13, 70.57) | 69.97 (69.23, 70.71) | 68.83 (68.10, 69.56) |
Swing Phase [%] | |||
Unloaded Side | 30.14 (29.42, 30.86) | 29.85 (29.14, 30.56) | 31.37 (30.58, 32.16) |
Loaded Side | 30.15 (29.43, 30.87) | 30.03 (29.29, 30.77) | 31.17 (30.44, 31.90) |
Single Support [%] | |||
Unloaded Side | 30.38 (29.65, 31.11) | 29.84 (29.09, 30.59) | 31.18 (30.46, 31.91) |
Loaded Side | 30.40 (29.68, 31.13) | 30.13 (29.37, 30.88) | 31.40 (30.61, 32.18) |
Double Support [%] | |||
Unloaded Side | 39.46 (38.07, 40.85) | 40.31 (38.92, 41.71) | 37.43 (35.95, 38.91) |
Loaded Side | 39.44 (38.04, 40.84) | 39.86 (38.39, 41.34) | 37.45 (35.97. 38.93) |
Gait Cycle [s] | |||
Unloaded Side | 1.12 (1.08, 1.17) | 1.13 (1.09, 1.18) | 1.14 (1.09, 1.18) |
Loaded Side | 1.12 (1.08, 1.17) | 1.13 (1.08, 1.17) | 1.14 (1.09, 1.18) |
Cadence [step/min] | |||
Unloaded Side | 108.72 (104.49, 112.95) | 107.70 (103.62, 111.77) | 107.00 (103.21, 110.79) |
Loaded Side | 108.61 (104.58, 112.65) | 108.21 (104.17, 112.26) | 107.07 (103.29, 110.84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadka, M.; Koncerewicz, M.M.; Gawda, P. Effects of Treadmill Inclination and Load Position on Gait Parameters while Carrying a Backpack Asymmetrically. Appl. Sci. 2024, 14, 8148. https://doi.org/10.3390/app14188148
Zawadka M, Koncerewicz MM, Gawda P. Effects of Treadmill Inclination and Load Position on Gait Parameters while Carrying a Backpack Asymmetrically. Applied Sciences. 2024; 14(18):8148. https://doi.org/10.3390/app14188148
Chicago/Turabian StyleZawadka, Magdalena, Monika Maria Koncerewicz, and Piotr Gawda. 2024. "Effects of Treadmill Inclination and Load Position on Gait Parameters while Carrying a Backpack Asymmetrically" Applied Sciences 14, no. 18: 8148. https://doi.org/10.3390/app14188148
APA StyleZawadka, M., Koncerewicz, M. M., & Gawda, P. (2024). Effects of Treadmill Inclination and Load Position on Gait Parameters while Carrying a Backpack Asymmetrically. Applied Sciences, 14(18), 8148. https://doi.org/10.3390/app14188148