Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material—Origin and Composition
2.2. Extraction Techniques and Procedures
2.3. Analysis of the Antioxidant Activity
2.4. GC-MS Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity of Maca Extracts
3.2. GC-MS Analysis of Maca Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhu, F. Chemical composition and health effects of maca (Lepidium meyenii). Food Chem. 2019, 288, 422–443. [Google Scholar] [CrossRef]
- Żurawska, K. Ziołolecznictwo Amazońskie i Andyjskie; Tower Press: Gdańsk, Poland, 2001. [Google Scholar]
- da Silva Leitao Peres, N.; Cabrera Parra Bortoluzzi, L.; Medeiros Marques, L.L.; Formigoni, M.; Hernandez Barros Fuchs, R.; Drovald, A.A.; Reitz Cardoso, F.A. Medicinal effects of Peruvian maca (Lepidium meyenii): A review. Food Funct. 2020, 11, 83–92. [Google Scholar] [CrossRef]
- Valerio, L.G., Jr.; Gonzales, G.F. Toxicological aspects of the South American herbs cat’s claw (Uncaria tomentosa) and maca (Lepidium meyenii). A Critical Synopsis. Toxicol. Rev. 2005, 24, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, D.; Jodlowska-Jedrych, B.; Borowska, K.; Wojtowicz, A. Lepidium meyenii (Maca)—Multidirectional health effects—Review. Curr. Issues Pharm. Med. Sci. 2018, 31, 107–112. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Elmasry, G.F.; Refaey, R.H.; El-Shiekh, R.A. Lepidium meyenii (maca) roots: UPLC-HRMS, molecular docking, and molecular dynamics. ACS Omega 2022, 7, 17339–17357. [Google Scholar] [CrossRef]
- Gonzales, G.F. Ethnobiology and ethnopharmacology of Lepidium meyenii (maca), a plant from the Peruvian Highlands. Evid.-Based Complement. Alternat. Med. 2012, 2012, 193496. [Google Scholar] [CrossRef]
- Lee, M.S.; Lee, H.W.; You, S.; Ha, K.-T. The use of maca (Lepidium meyenii) to improve semen quality: A systematic review. Maturitas 2016, 92, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, M.S.; Qu, F.; Lee, J.-W.; Kim, E. Maca (Lepidium meyenii Walp.) on semen quality parameters: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 934740. [Google Scholar] [CrossRef]
- Chain, F.E.; Grau, A.; Martins, J.C.; Catalan, C.A.N. Macamides from wild ‘Maca’, Lepidium meyenii Walpers (Brassicaceae). Phytochem. Lett. 2014, 8, 145–148. [Google Scholar] [CrossRef]
- Kedare, S.D.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Sandoval, M.; Okuhama, N.N.; Angeles, F.M.; Melchor, V.V.; Condezo, L.A.; Lao, J.; Miller, M.J.S. Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem. 2002, 79, 207–213. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, Y.H. Physicochemical and antioxidant properties of methanol extract from Maca (Lepidium meyenii Walp.) leaves and roots. Food Sci. Technol. 2019, 39, 278–286. [Google Scholar] [CrossRef]
- Wang, L.W.; Liang, J.; Wang, X.D.; Yuan, X.F.; Zhao, B.; Yang, Y.W. High efficient antioxidant activity of extracts from Lepidium meyenii Walp. Asian J. Chem. 2012, 24, 4795–4798. [Google Scholar]
- You, J.Y.; Joung, J.A.; Baek, S.J.; Chen, J.; Choi, J.H. Simultaneous extraction of proteins and carbohydrates, including phenolics, antioxidants, and macamide B from Peruvian maca (Lepidium meyenii Walp.). Korean J. Food Preserv. 2021, 28, 868–877. [Google Scholar] [CrossRef]
- Gan, J.; Feng, Y.; He, Z.; Li, X.; Zhang, H. Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). J. Food Qual. 2017, 2017, 3185945. [Google Scholar] [CrossRef]
- Zha, S.; Zhao, Q.; Chen, J.; Wang, L.; Zhang, G.; Zhang, H.; Zhao, B. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii). Carbohydr. Polym. 2014, 111, 584–587. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Q.; Wang, L.; Zhao, M.; Zhao, B. Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice. Int. J. Biol. Macromol. 2017, 99, 63–70. [Google Scholar] [CrossRef]
- Xia, C.; Deng, J.; Pan, Y.; Lin, C.; Zhu, Y.; Xiang, Z.; Li, W.; Chen, J.; Zhang, Y.; Zhu, G.; et al. Comprehensive profiling of macamides and fatty acid derivatives in maca with different postharvest drying processes using UPLC-QTOF-MS. ACS Omega 2021, 6, 24484–24492. [Google Scholar] [CrossRef] [PubMed]
- Esparza, E.; Hadzich, A.; Kofer, W.; Mithöfer, A.; Cosio, E.G. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry 2015, 116, 138–148. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2021, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Han, D. Chemical Analysis of Antioxidant Capacity: Mechanisms and Techniques; De Gruyter: Beijing, China; Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Meissner, H.O.; Xub, L.; Wan, W.; Yi, F. Glucosinolates profiles in Maca phenotypes cultivated in Peru and China (Lepidium peruvianum syn. L. meyenii). Phytochem. Lett. 2019, 31, 208–216. [Google Scholar] [CrossRef]
- Yan, S.; Wei, J.; Chen, R. Evaluation of the biological activity of glucosinolates and their enzymolysis products obtained from Lepidium meyenii Walp. (Maca). Int. J. Mol. Sci. 2022, 23, 14756. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, J.; Su, J.; Li, L.; Hu, S.; Li, B.; Zhang, X.; Xu, Z.; Chen, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J. Agric. Food Chem. 2013, 61, 10604–10611. [Google Scholar] [CrossRef] [PubMed]





| Extraction Process Conditions | DPPH Scavenging Activity | Total Phenolic Content | ||
|---|---|---|---|---|
| Solvent | Time (min) | Technique | TEAC [µM TE/L] | TPC [mg GAE/L] |
| Ethanol | 15 | M | 16.3 ± 1.3 | 3.2 ± 0.9 |
| 30 | 25.4 ± 1.3 | 5.3 ± 0.9 | ||
| 60 | 37.7 ± 1.3 | 11.8 ± 0.7 | ||
| 15 | MSH | 71.8 ± 1.6 | 34.5 ± 1.1 | |
| 30 | 84.7 ± 1.3 | 39.8 ± 1.2 | ||
| 60 | 87.1 ± 1.7 | 44.2 ± 1.4 | ||
| 15 | UAE | 76.1 ± 2.1 | 41.6 ± 0.8 | |
| 30 | 89.3 ± 2.8 | 46.0 ± 1.1 | ||
| 60 | 112.6 ± 3.0 | 63.0 ± 1.2 | ||
| 15 | RE | 150.2 ± 2.5 | 83.8 ± 0.9 | |
| 30 | 148.8 ± 2.9 | 88.9 ± 1.2 | ||
| 60 | 149.5 ± 3.2 | 95.3 ± 1.4 | ||
| Water | 15 | M | 147.0 ± 2.7 | 73.2 ± 1.1 |
| 30 | 159.0 ± 2.8 | 80.9 ± 1.1 | ||
| 60 | 191.0 ± 1.9 | 111.2 ± 1.2 | ||
| 15 | MSH | 192.8 ± 1.8 | 122.1 ± 2.1 | |
| 30 | 222.0 ± 2.0 | 124.8 ± 2.1 | ||
| 60 | 229.6 ± 2.0 | 128.2 ± 1.8 | ||
| 15 | UAE | 208.2 ± 2.4 | 123.2 ± 1.6 | |
| 30 | 212.9 ± 2.1 | 131.5 ± 1.4 | ||
| 60 | 217.0 ± 1.8 | 136.9 ± 1.4 | ||
| 15 | RE | 208.1 ± 2.5 | 133.2 ± 1.9 | |
| 30 | 199.0 ± 3.1 | 132.7 ± 2.3 | ||
| 60 | 197.3 ± 3.3 | 130.4 ± 1.1 | ||
| Variables (n = 72) | Minimum | Maximum | Mean | Standard Deviation | Median | Lower Quartile | Upper Quartile |
|---|---|---|---|---|---|---|---|
| RSA [%] | 6.94 | 75.32 | 47.45 | 21.04 | 50.00 | 29.29 | 66.50 |
| TEAC [µM TE/L] | 14.96 | 231.16 | 143.06 | 66.53 | 151.11 | 85.62 | 203.28 |
| TPC [mg GAE/L] | 2.09 | 138.45 | 82.73 | 44.67 | 86.41 | 42.77 | 126.41 |
| No. | Compound | RT (min) | MS Signals *, m/z | Content ** [%] | ||
|---|---|---|---|---|---|---|
| [M●]+ | Characteristic Fragment Ions | E | W | |||
| 1 | Benzyl nitrile | 5.82 | 117 | 90, 116, 89, 51, 63 | 8.1 | 6.3 |
| 2 | 5-Hydroxymethylfurfural | 8.49 | 126 | 97, 41, 43, 69, 29 | 2.6 | 6.6 |
| 3 | Benzyl isothiocyaniate | 10.66 | 149 | 91, 65, 92, 51, 39 | 0.2 | 0.2 |
| 4 | Unknown I | 14.20 | (?) | 57, 73, 31, 43, 86 | 28.0 | 38.4 |
| 5 | Unknown II | 18.50 | (?) | 117, 43, 75, 57, 132 | 20.8 | 39.6 |
| 6 | Hexadecanoic acid | 23.30 | 256 | 43, 73, 60, 41, 57 | 3.1 | nd |
| 7 | Linoleic acid | 26.54 | 280 | 67, 81, 82, 95, 55 | 3.8 | nd |
| 8 | Hexadecanamide | 27.32 | 255 | 59, 72, 43, 86, 41 | 1.1 | nd |
| 9 | (9Z)-Octadecenamide | 30.18 | 281 | 59, 72, 55, 41, 43 | 7.7 | nd |
| 10 | Octadecanamide | 30.66 | 283 | 59, 72, 43, 128, 86 | 1.3 | nd |
| 11 | N-Benzylhexadecanamide | 37.47 | 345 | 149, 91, 162, 106, 43 | 4.2 | nd |
| 12 | N-Benzyl-(9Z,12Z)-octadecadienamide | 39.84 | 369 | 91, 106, 149, 162, 67 | 1.3 | nd |
| 13 | N-Benzyl-(9Z)-octadecenamide | 39.99 | 371 | 91, 149, 106, 162, 79 | 1.6 | nd |
| 14 | Campesterol | 42.18 | 400 | 43, 55, 57, 81, 107 | 1.4 | 0.1 |
| 15 | β-Sitosterol | 43.27 | 414 | 43, 57, 55, 41, 107 | 5.2 | 0.2 |
| 16 | Unknown III | 51.46 | 505 | 55, 43, 57, 69, 41 | 3.0 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzięcioł, M.; Wróblewska, A.; Janda-Milczarek, K. Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Appl. Sci. 2023, 13, 4827. https://doi.org/10.3390/app13084827
Dzięcioł M, Wróblewska A, Janda-Milczarek K. Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Applied Sciences. 2023; 13(8):4827. https://doi.org/10.3390/app13084827
Chicago/Turabian StyleDzięcioł, Małgorzata, Agnieszka Wróblewska, and Katarzyna Janda-Milczarek. 2023. "Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques" Applied Sciences 13, no. 8: 4827. https://doi.org/10.3390/app13084827
APA StyleDzięcioł, M., Wróblewska, A., & Janda-Milczarek, K. (2023). Comparative Studies of DPPH Radical Scavenging Activity and Content of Bioactive Compounds in Maca (Lepidium meyenii) Root Extracts Obtained by Various Techniques. Applied Sciences, 13(8), 4827. https://doi.org/10.3390/app13084827

