An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Wine Samples
2.3. Optimization of Headspace Solid-Phase Microextraction
2.4. Experimental Design
2.5. GC-MS Analysis
3. Results and Discussion
3.1. HS-SPME Optimization by Experimental Design
3.2. Wine Flavour Profiling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanco, M.; Lerro, M.; Marotta, G. Consumers’ preferences for wine attributes: A best-worst scaling analysis. Sustainability 2020, 12, 2819. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U. Wine Aroma. In Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; pp. 241–267. [Google Scholar]
- Ciani, M.; Comitini, F. Yeast interactions in multi-starter wine fermentation. Curr. Opin. Food Sci. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Kosseva, M.R. Immobilization of Microbial Cells in Food Fermentation Processes. Food Bioprocess Technol. 2011, 4, 1089–1118. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Pappalardo, I.; Santarsiero, A.; Martelli, G.; Bianco, G. Characterization of quercetin derivatives in crossing combination of habanero white and capsicum annuum peppers and of anti-inflammatory and cytotoxic activity. Separations 2021, 8, 90. [Google Scholar] [CrossRef]
- Pascale, R.; Acquavia, M.A.; Onzo, A.; Cataldi, T.R.I.; Calvano, C.D.; Bianco, G. Analysis of surfactants by mass spectrometry: Coming to grips with their diversity. Mass Spectrom. Rev. 2021, 1–32. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Foti, L.; Carlucci, G.; Scrano, L.; Martelli, G.; Brienza, M.; Coviello, D.; Bianco, G.; Lelario, F. Analytical methods for extraction and identification of primary and secondary metabolites of apple (Malus domestica) fruits: A review. Separations 2021, 8, 91. [Google Scholar] [CrossRef]
- Onzo, A.; Acquavia, M.A.; Cataldi, T.R.I.; Ligonzo, M.; Coviello, D.; Pascale, R.; Martelli, G.; Bondoni, M.; Scrano, L.; Bianco, G. Coceth sulfate characterization by electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8884. [Google Scholar] [CrossRef]
- Abbott, N.; Etiévant, P.; Langlois, D.; Lesschaeve, I.; Issanchou, S. Evaluation of the Representativeness of the Odor of Beer Extracts Prior to Analysis by GC Eluate Sniffing. J. Agric. Food Chem. 1993, 41, 777–780. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-SanJosé, M.L.; Beltrán, S. Aroma composition of wine studied by different extraction methods. Anal. Chim. Acta 2002, 458, 85–93. [Google Scholar] [CrossRef]
- Castro, R.; Natera, R.; Durán, E.; García-Barroso, C. Application of solid phase extraction techniques to analyse volatile compounds in wines and other enological products. Eur. Food Res. Technol. 2008, 228, 1–18. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- De-La-fuente-blanco, A.; Ferreira, V. Gas chromatography olfactometry (Gc-o) for the (semi)quantitative screening of wine aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME-GC-MS and HPLC-MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.L.; Silva, P.; Câmara, J.S. Establishment of the volatile signature of wine-based aromatic vinegars subjected to maceration. Molecules 2018, 23, 499. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.S.; Li, H.; Wang, H.; Zhang, L. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). J. Food Compos. Anal. 2008, 21, 689–694. [Google Scholar] [CrossRef]
- Bianco, G.; Novario, G.; Zianni, R.; Cataldi, T.R.I. Comparison of two SPME fibers for the extraction of some off-flavor cork-taint compounds in bottled wines investigated by GC-HRMS. Anal. Bioanal. Chem. 2009, 393, 2019–2027. [Google Scholar] [CrossRef]
- Fiorini, D.; Pacetti, D.; Gabbianelli, R.; Gabrielli, S.; Ballini, R. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids. J. Chromatogr. A 2015, 1409, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, R.; Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. J. Mark. Res. 1979, 16, 291. [Google Scholar] [CrossRef] [Green Version]
- Bouaid, A.; Ramos, L.; Gonzalez, M.J.; Fernández, P.; Cámara, C. Solid-phase microextraction method for the determination of atrazine and four organophosphorus pesticides in soil samples by gas chromatography. J. Chromatogr. A 2001, 939, 13–21. [Google Scholar] [CrossRef]
- Varrone, C.; Giussani, B.; Izzo, G.; Massini, G.; Marone, A.; Signorini, A.; Wang, A. Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int. J. Hydrogen Energy 2012, 37, 16479–16488. [Google Scholar] [CrossRef]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Boscaino, F.; Ionata, E.; La Cara, F.; Guerriero, S.; Marcolongo, L.; Sorrentino, A. Impact of Saccharomyces cerevisiae and Metschnikowia fructicola autochthonous mixed starter on Aglianico wine volatile compounds. J. Food Sci. Technol. 2019, 56, 4982–4991. [Google Scholar] [CrossRef]
- Alba, V.; Anaclerio, A.; Gasparro, M.; Caputo, A.R.; Montemurro, C.; Blanco, A.; Antonacci, D. Ampelographic and molecular characterisation of Aglianico accessions (Vitis vinifera L.) collected in Southern Italy. S. Afr. J. Enol. Vitic. 2011, 32, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Mok, C.; Song, K.T.; Park, Y.S.; Lim, S.; Ruan, R.; Chen, P. High hydrostatic pressure pasteurization of red wine. J. Food Sci. 2006, 71, M265–M269. [Google Scholar] [CrossRef]
- Alberico, G.; Capece, A.; Mauriello, G.; Pietrafesa, R.; Siesto, G.; Garde-cerd, T.; Maresca, D.; Romano, R.; Romano, P. Influence of Microencapsulation on Fermentative Behavior of Hanseniaspora osmophila in Wine Mixed Starter Fermentation. Fermentation 2021, 7, 112. [Google Scholar] [CrossRef]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 30 June 2021).
- Chidi, B.S.; Bauer, F.F.; Rossouw, D. Organic acid metabolism and the impact of fermentation practices on wine acidity–A review. S. Afr. J. Enol. Vitic. 2018, 39, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to Wine aroma and its intended use for Wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, P.; Caruso, M.; Capece, A.; Lipani, G.; Paraggio, M.; Fiore, C. Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts. World J. Microbiol. Biotechnol. 2003, 19, 311–315. [Google Scholar] [CrossRef]
- Rocha, S.; Ramalheira, V.; Barros, A.; Delgadillo, I.; Coimbra, M.A. Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model. J. Agric. Food Chem. 2001, 49, 5142–5151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.W.; Wan Aida, W.M.; Maskat, M.Y.; Osman, H. Optimization of headspace solid phase microextraction (HS-SPME) for gas chromatography mass spectrometry (GC-MS) analysis of aroma compound in palm sugar (Arenga pinnata). J. Food Compos. Anal. 2006, 19, 822–830. [Google Scholar] [CrossRef]
- Benucci, I.; Cecchi, T.; Lombardelli, C.; Maresca, D.; Mauriello, G.; Esti, M. Novel microencapsulated yeast for the primary fermentation of green beer: Kinetic behavior, volatiles and sensory profile. Food Chem. 2021, 340, 127900. [Google Scholar] [CrossRef]
- De Hoffmann, E.; Stroobant, V. Mass Spectrometry Principles and Applications; John & Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fu, M.; Duan, P.; Gao, J.; Kenttämaa, H.I. Ion-molecule reactions for the differentiation of primary, secondary and tertiary hydroxyl functionalities in protonated analytes in a tandem mass spectrometer. Analyst 2012, 137, 5720–5722. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.P.; Tyburczy, C.; Lawrence, P.; Bessa, R.J.B.; Thomas Brenna, J. Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters. Rapid Commun. Mass Spectrom. 2011, 25, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- De-La-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- San-juan, F.; Ferreira, V.; Cacho, J.; Escudero, A.; Prolabo, B.D.H. Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines can be Predicted from their Aroma-Active Chemical Composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef] [PubMed]
- Saenz-Navajas, M.-P.; Avizcuri, J.-M.; Ballester, J.; Fernandez-Zurbano, P.; Ferreira, V.; Dominique Peyron, D.V. Sensory-active compounds influencing wine experts’ and consumers’ perception of red wine intrinsic quality. Food Sci. Technol. 2015, 60, 400–411. [Google Scholar] [CrossRef]
- Costello, P.J.; Siebert, T.E.; Solomon, M.R.; Bartowsky, E.J. Synthesis of fruity ethyl esters by acyl coenzyme A: Alcohol acyltransferase and reverse esterase activities in Oenococcus oeni and Lactobacillus plantarum. J. Appl. Microbiol. 2013, 114, 797–806. [Google Scholar] [CrossRef]
- Antalick, G.; Šuklje, K.; Blackman, J.W.; Meeks, C.; Deloire, A.; Schmidtke, L.M. Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate. J. Agric. Food Chem. 2015, 63, 4664–4672. [Google Scholar] [CrossRef]
- Viana, F.; Gil, J.V.; Vallés, S.; Manzanares, P. Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae. Int. J. Food Microbiol. 2009, 135, 68–74. [Google Scholar] [CrossRef]
- Plata, C.; Millán, C.; Mauricio, J.C.; Ortega, J.M. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Schneider, R.; Baumes, R. Formation pathways of ethyl esters of branched short-chain fatty acids during wine aging. J. Agric. Food Chem. 2005, 53, 3503–3509. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, T.; Reglero, G.; Herraiz, M.; Martin-Alvarez, P.J.; Cabezudo, M.D. The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am. J. Enol. Vitic. 1990, 41, 313–318. [Google Scholar] [CrossRef]
- Han, G.; Webb, M.R.; Waterhouse, A.L. Acetaldehyde reactions during wine bottle storage. Food Chem. 2019, 290, 208–215. [Google Scholar] [CrossRef]
- Drtilová, T.; Ďurčanská, K.; Machyňáková, A.; Špánik, I.; Klempová, T.; Furdíková, K. Impact of different pure cultures of Saccharomyces cerevisiae on the volatile profile of Cabernet Sauvignon rosé wines. Czech J. Food Sci. 2020, 38, 94–102. [Google Scholar] [CrossRef]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F. Role of Yeasts on the Sensory Component of Wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Mi, J.; Chen, X.; Luo, Q.; Li, X.; He, J.; Zhao, R.; Jin, B.; Yan, Y.; Cao, Y. Analysis on volatile components of co-fermented fruit wines by Lycium ruthenicum murray and wine grapes. Food Sci. Technol. 2021, 42, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.K.; Lan, Y.B.; Zhu, B.Q.; Xiang, X.F.; Duan, C.Q.; Shi, Y. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography–mass spectrometry. J. Sci. Food Agric. 2018, 98, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A.; Mentana, A.; Quinto, M.; Centonze, D.; Previtali, M.A.; Varva, G.; Del Nobile, M.A.; De Palma, L. Volatile composition and sensory profile of wines obtained from partially defoliated vines: The case of Nero di Troia wine. Eur. Food Res. Technol. 2017, 243, 247–261. [Google Scholar] [CrossRef]
Variable | Coded Levels | ||
---|---|---|---|
(−1.0) | (0.0) | (+1.0) | |
Extraction time (min) | 10 | 20 | 30 |
Extraction temperature (°C) | 40 | 50 | 60 |
Experiment | Variables | Response | |
---|---|---|---|
Temperature (°C) (°C) | Time (min) (min) | Total Area | |
1 | 40 | 10 | 3.26 × 108 |
2 | 40 | 20 | 4.40 × 109 |
3 | 40 | 30 | 2.79 × 108 |
4 | 50 | 10 | 9.67 × 108 |
5 | 50 | 20 | 4.84 × 109 |
6 | 50 | 30 | 2.22 × 109 |
7 | 60 | 10 | 3.42 × 109 |
8 | 60 | 20 | 1.14 × 1010 |
9 | 60 | 30 | 8.37 × 109 |
Peak N. | Retention Time (min) | Compound Name | Quality Match | Molecular Formula | Molecular Weight (g/mol) | Boiling Point (°C) | OTV (mg/L) | Detected Compound * | ||
---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | C | ||||||||
(1) | 1.52 | Acetaldehyde | 90 | C2H4O | 44.0262 | 20.20 | 0.21 | + | + | + |
(2) | 2.41 | Ethyl acetate | 91 | C4H8O2 | 88.0524 | 77.11 | 3.90 | + | + | + |
(3) | 3.93 | 2-butanol-3-methyl | 89 | C5H12O | 88.1482 | 132.15 | 0.27 | + | − | − |
(4) | 4.25 | 1-Butanol, 3-methyl- | 90 | C5H12O | 88.1482 | 132.59 | 60 | + | − | − |
(5) | 4.34 | 1-Heptanol | 56 | C7H16O | 116.2013 | 178.79 | 0.21 | + | − | − |
(6) | 8.63/2.31 ** | 1-Butanol, 3-methyl-, acetate | 90 | C7H14O2 | 130.1849 | 144.39 | 0.16 | + | + | + |
(7) | 8.89/4.0 *** | Acetic acid | 91 | C2H4O2 | 60.0520 | 117.72 | 200 | + | + | + |
(8) | 10.23 | 2,3-Butanediol | 90 | C4H10O2 | 90.1210 | 201.45 | 0.10 | + | −- | − |
(9) | 15.53 | Phenylethyl Alcohol | 91 | C8H10O | 122.1644 | 228.35 | 200 | + | − | − |
(10) | 17.00 | Octanoic acid, ethyl ester | 91 | C10H20O2 | 172.2646 | 213.47 | 0.58 | + | + | + |
(11) | 18.21 | Acetic acid, 2-phenylethyl ester | 90 | C10H12O2 | 164.2011 | 240.15 | 1.80 | + | + | − |
(12) | 20.56 | Decanoic acid, ethyl ester | 94 | C12H24O2 | 200.3178 | 259.23 | 0.35 | + | − | − |
(13) | 21.85 | 1-Dodecanol | 94 | C12H26O | 186.3342 | 247.43 | 0.33 | + | − | − |
(14) | 22.48 | Phenol, 2,5 bis (1,1-dimethylethyl) | 95 | C14H22O | 206.3239 | 352.59 | − | + | − | − |
(15) | 23.26 | Nerolidol | 90 | C15H26O | 222.3663 | 363.36 | 1.00 | + | − | − |
(16) | 23.65 | Dodecanoic acid, ethyl ester | 93 | C14H28O2 | 228.3709 | 304.99 | 6.30 | + | − | + |
(17) | 25.07 | Cyclododecane | 92 | C12H24 | 168.3190 | 250.85 | − | + | − | − |
(18) | 26.42 | Tetradecanoic acid, ethyl ester | 98 | C16H32O2 | 256.4241 | 350.75 | 2.50 | + | + | − |
(19) | 28.70 | Ethyl 9-hexadecenoate | 96 | C18H34O2 | 282.4614 | 400.67 | 0.03 | + | − | − |
(20) | 28.93 | Hexadecanoic acid, ethyl ester | 99 | C18H36O2 | 284.4772 | 396.51 | 0.01 | + | + | − |
(21) | 30.91 | Linoleic acid ethyl ester | 98 | C20H36O2 | 308.4986 | 450.59 | − | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesoro, C.; Acquavia, M.A.; Giussani, B.; Bianco, G.; Pascale, R.; Lelario, F.; Ciriello, R.; Capece, A.; Pietrafesa, R.; Siesto, G.; et al. An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis. Appl. Sci. 2023, 13, 4609. https://doi.org/10.3390/app13074609
Tesoro C, Acquavia MA, Giussani B, Bianco G, Pascale R, Lelario F, Ciriello R, Capece A, Pietrafesa R, Siesto G, et al. An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis. Applied Sciences. 2023; 13(7):4609. https://doi.org/10.3390/app13074609
Chicago/Turabian StyleTesoro, Carmen, Maria Assunta Acquavia, Barbara Giussani, Giuliana Bianco, Raffaella Pascale, Filomena Lelario, Rosanna Ciriello, Angela Capece, Rocchina Pietrafesa, Gabriella Siesto, and et al. 2023. "An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis" Applied Sciences 13, no. 7: 4609. https://doi.org/10.3390/app13074609
APA StyleTesoro, C., Acquavia, M. A., Giussani, B., Bianco, G., Pascale, R., Lelario, F., Ciriello, R., Capece, A., Pietrafesa, R., Siesto, G., & Di Capua, A. (2023). An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis. Applied Sciences, 13(7), 4609. https://doi.org/10.3390/app13074609