The Potential of Aquafaba as a Structure-Shaping Additive in Plant-Derived Food Technology
Abstract
:1. Introduction
2. History and Etymology
3. Methods of Production and Storage of Aquafaba
4. Chemical Composition of Aquafaba
5. Functional Properties of Aquafaba in Food Technology
5.1. Foaming Properties
5.2. Emulsifying Properties
5.3. Gelling and Thickening Properties
6. The Use of Aquafaba in Baking and Confectionery
6.1. Meringue
6.2. Crackers
6.3. Mousse
6.4. Cake
6.5. Bread
6.6. Vegan Dairy Substitutes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Queiroz, F.L.N.; Raposo, A.; Han, H.; Nader, M.; Ariza-Montes, A.; Zandonadi, R.P. Eating competence, food consumption and health outcomes: An overview. Int. J. Env. Res. Public. Health 2022, 19, 4484. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, I. Evaluation of food security and food self-sufficiency of Poland against the background of European Union countries. Int. Bus. Glob. Econ. 2008, 37, 168–182. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Schepers, J.; Annemans, L. The potential health and economic effects of plant-based food patterns in Belgium and the United Kingdom. Nutrition 2018, 48, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Escamilla, R. Food Security and the 2015–2030 sustainable development goals: From human to planetary health. Curr. Dev. Nutr. 2017, 1, 1007005. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, E. Pro-ecological social attitudes as one of today’s ways of understanding sustainable development: Contemporary nutritional trends: Vegetarianism and veganism. Zrównoważony Rozw. Deb. Nauk. 2018, 3, 111–118. (In Polish) [Google Scholar]
- Boczar, P. Plant protein—Sources, production costs and quality. Zesz. Nauk. SGGW Warszawie Probl. Rol. Swiat. 2018, 18, 122–132. (In Polish) [Google Scholar] [CrossRef]
- Sharif, H.; Williams, P.; Sharif, M.; Abbas, S.; Majeed, H.; Masamba, K.; Safdar, W.; Zhong, F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants—A review. Food Hydrocoll. 2018, 76, 2–16. [Google Scholar] [CrossRef]
- Szulc, K. Assessment of the possibility of using aquafaba in the production of vegetable emulsion. Technol. Prog. Food Process. 2021, 2, 56–61. [Google Scholar]
- Erem, E.; Icyer, N.C.; Tatlisu, N.B.; Kilicli, M.; Kaderoglu, G.H.; Toker, Ö.S. A new trend among plant-based food ingredients in food processing technology: Aquafaba. Crit. Rev. Food Sci. Nutr. 2021, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Seid, H.; Rosenbaum, M. Low carbohydrate and low-fat diets: What we don’t know and why we should know it. Nutrients 2019, 11, 2749. [Google Scholar] [CrossRef] [Green Version]
- Vainio, A.; Niva, M.; Jallinoja, P.; Latvala, T. From beef to beans: Eating motives and the replacement of animal proteins with plant proteins among Finnish consumers. Appetite 2016, 106, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cader, P.; Lesiów, T. Veganism and vegetarianism as diets in the contemporary consumer society. Eng. Sci. Technol. 2021, 1, 9–33. (In Polish) [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef] [PubMed]
- Nguyet, T.; Ngọc, N.; Quoc, L.; Tran, G. Application of chickpeas aquafaba with pre-treatment as egg replacer in cake production. Chem. Eng. Trans. 2021, 89, 7–12. [Google Scholar] [CrossRef]
- McKeown, P.; Dunn, R.A. ‘Life-style choice’ or a philosophical belief?: The argument for veganism and vegetarianism to be a protected philosophical belief and the position in England and Wales. Liverp. Law. Rev. 2021, 42, 207–241. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, R.; Reaney, M. Aquafaba, from food waste to a value-added product. Food Wastes By-Prod. 2020, 10, 93–126. [Google Scholar] [CrossRef]
- Mustafa, R.; He, Y.; Shim, Y.; Reaney, M. Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. Int. J. Food Sci. Technol. 2018, 53, 2247–2255. [Google Scholar] [CrossRef]
- Grizio, M.; Specht, L.; The Good Food Institute. Plant-Based Egg Alternatives: Optimizing for Functional Properties and Applications. 2021. Available online: https://gfi.org/wp-content/uploads/2021/02/Plantbasedeggalternatives.pdf (accessed on 29 January 2023).
- Wieczorek, C.; Sionek, B.; Przybylski, W.; Lahuta, L. The influence of culinary processing of legume seeds on the content of soluble carbohydrates. Zesz. Probl. Postępów Nauk. Rol. 2016, 584, 139–150. (In Polish) [Google Scholar]
- He, Y.; Purdy, S.; Tse, T.; Tar’an, B.; Meda, V.; Reaney, M.; Mustafa, R. Standardization of aquafaba production and application in vegan mayonnaise analogs. Foods 2021, 10, 1978. [Google Scholar] [CrossRef]
- Echeverria-Jaramillo, E.; Kim, Y.; Nam, Y.; Zheng, Y.; Cho, J.; Hong, W.; Kang, S.; Kim, J.; Shim, Y.; Shin, W. Revalorization of the cooking water (Aquafaba) from soybean varieties generated as a by-product of food manufacturing in Korea. Foods 2021, 10, 2287. [Google Scholar] [CrossRef]
- Baik, B.; Han, I. Cooking, roasting, and fermentation of chickpeas, lentils, peas, and soybeans for fortification of leavened bread. Cereal Chem. 2012, 89, 269–275. [Google Scholar] [CrossRef]
- Bird, L.; Pilkington, C.; Saputra, A.; Serventi, L. Products of chickpea processing as texture improvers in gluten-free bread. Food Sci. Technol. Int. 2017, 23, 690–698. [Google Scholar] [CrossRef]
- Stantiall, S.; Dale, K.; Calizo, F.; Serventi, L. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. Eur. Food Res. Technol. 2018, 244, 97–104. [Google Scholar] [CrossRef]
- Serventi, L.; Wang, S.; Zhu, J.; Liu, S.; Fei, F. Cooking water of yellow soybeans as emulsifier in gluten-free crackers. Eur. Food Res. Technol. 2018, 244, 2141–2148. [Google Scholar] [CrossRef]
- Damian, J.; Huo, S.; Serventi, L. Phytochemical content and emulsifying ability of pulses cooking water. Eur. Food Res. Technol. 2018, 244, 1647–1655. [Google Scholar] [CrossRef]
- Lafarga, T.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Optimization of the pH and boiling conditions needed to obtain improved foaming and emulsifying properties of chickpea aquafaba using a response surface methodology. Int. J. Gastron. Food Sci. 2019, 18, 100177. [Google Scholar] [CrossRef]
- He, Y.; Shim, Y.; Mustafa, R.; Meda, V.; Reaney, M. Chickpea cultivar selection to produce aquafaba with superior emulsion properties. Foods 2019, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Aslan, M.; Ertaş, N. Possibility of using ‘chickpea aquafaba’ as egg replacer in traditional cake formulation. Harran Tarım Gıda Bilim. Derg. 2020, 24, 1–8. [Google Scholar] [CrossRef]
- Alsalman, F.; Tulbek, M.; Nickerson, M.; Ramaswamy, H. Evaluation and optimization of functional and antinutritional properties of aquafaba. Legume Sci. 2020, 1, 1–15. [Google Scholar] [CrossRef]
- Meurer, M.; de Souza, D.; Ferreira Marczak, L. Effects of ultrasound on technological properties of chickpea cooking water (aquafaba). J. Food Eng. 2020, 265, 109688. [Google Scholar] [CrossRef]
- Nguyet, T.; Nguyen, T.; Buu, T.; Quoc, L. Effect of processing methods on foam properties and application of lima bean (Phaseolus lunatus L.) aquafaba in eggless cupcakes. J. Food Process. Preserv. 2020, 44, e14886. [Google Scholar] [CrossRef]
- He, Y.; Shim, Y.; Shen, J.; Kim, J.; Cho, J.; Hong, W.; Meda, V.; Reaney, M. Aquafaba from Korean Soybean II: Physicochemical properties and composition characterized by NMR analysis. Foods 2021, 10, 2589. [Google Scholar] [CrossRef] [PubMed]
- Nguyet, T.; Quoc, L.; Buu, T. Evaluation of textural and microstructural properties of vegan aquafaba whipped cream from chickpeas. Chem. Eng. Trans. 2021, 83, 421–426. [Google Scholar] [CrossRef]
- Karatay, G.; Galvão, A.; Hubinger, M. Storage stability of conventional and high internal phase emulsions stabilized solely by chickpea aquafaba. Foods 2022, 11, 1588. [Google Scholar] [CrossRef]
- Silva, P.; Kalschne, D.; Salvati, D.; Bona, E.; Rodrigues, A. Aquafaba powder, lentil protein and citric acid as egg replacer in gluten-free cake: A model approach. Appl. Food Res. 2022, 2, 100188. [Google Scholar] [CrossRef]
- Alsalman, F.; Tulbek, M.; Nickerson, M.; Ramaswamy, H. Evaluation of factors affecting aquafaba rheological and thermal properties. LWT 2020, 1, 1–33. [Google Scholar] [CrossRef]
- Aslan, M.; Ertaş, N. Foam drying of aquafaba: Optimization with mixture design. J. Food Process. Preserv. 2021, 4, e15185. [Google Scholar] [CrossRef]
- Chigwedere, C.M.; Olaoye, T.F.; Kyomugasho, C.; Jamsazzadeh Kermani, Z.; Pallares Pallares, A.; Van Loey, A.M.; Grauwet, T.; Hendrickx, M.E. Mechanistic insight into softening of Canadian wonder common beans (Phaseolus vulgaris) during cooking. Food Res. Int. 2018, 106, 522–531. [Google Scholar] [CrossRef]
- Kinyanjui, P.; Njoroge, D.; Makokha, A.; Christiaens, S.; Ndaka, D.; Hendrickx, M. Hydration properties and texture fingerprints of easy-and hard-to-cook bean varieties. Food Sci. Nutr. 2015, 3, 39–47. [Google Scholar] [CrossRef]
- Wood, J.A.; Tan, H.-T.; Collins, H.M.; Yap, K.; Khor, S.F.; Lim, W.L.; Xing, X.; Bulone, V.; Burton, R.A.; Fincher, G.B.; et al. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons. Plant. Cell. Env. 2018, 41, 2195–2208. [Google Scholar] [CrossRef] [Green Version]
- Shim, Y.; Mustafa, R.; Shen, J.; Ratanapariyanuch, K.; Reaney, M. Composition and properties of aquafaba: Water recovered from commercially canned chickpeas. J. Vis. Exp. 2018, 132, e56305. [Google Scholar] [CrossRef]
- Raikos, V.; Hayes, H.; Ni, H. Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: Recipe optimization and storage stability. Int. J. Food Sci. Technol. 2020, 55, 1935–1942. [Google Scholar] [CrossRef]
- Buhl, T.; Christensen, C.; Hammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocoll. 2019, 96, 354–364. [Google Scholar] [CrossRef]
- He, Y.; Meda, V.; Reaney, M.; Mustafa, R. Aquafaba, a new plant-based rheological additive for food applications. Trends Food Sci. Technol. 2021, 111, 27–42. [Google Scholar] [CrossRef]
- Lamich, L. Aquafaba, an Egg Substitute for Food Applications. Available online: http://hdl.handle.net/2445/184718 (accessed on 6 December 2022).
- El-Adawy, T. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant. Food Hum. Nutr. 2002, 57, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, nutritional value, health benefits, application to bread and snacks: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef]
- Kiliçli, M.; Bayram, M.; Said, O. Usage of Green. Pea Aquafaba Modified with Ultrasound in Production of Whipped Cream; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Tsykhanovska, I.; Yevlash, V.; Trishch, R.; Lazarieva, T.; Alexandrov, A.; Nikulina, A. Functional and technological properties of food additive “Magnetofood” in production of shaped jelly marmalade on agar and pectin. Food Sci. Technol. 2021, 15, 143–154. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Pandya, J.K.; McClements, D.J.; Lu, J.; Kinchla, A.J. Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Crit. Rev. Food Sci. Nutr. 2022, 62, 4752–4768. [Google Scholar] [CrossRef]
- Baiano, A. 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Rev. Int. 2020, 38, 986–1016. [Google Scholar] [CrossRef]
- Karatay, G.; Rebellato, A.; Joy Steel, C.; Dupas Hubinger, M. Chickpea aquafaba-based emulsions as a fat replacer in pound cake: Impact on cake properties and sensory analysis. Foods 2022, 1, 2484. [Google Scholar] [CrossRef]
- Horner, D.; Huneycutt, E.; Ross, B. Nutrition and dietetic practice aquafaba and flax seed gel as a substitute for egg whites in french macaron cookies. J. Nutr. Diet. Pr. 2019, 3, 1–9. [Google Scholar]
- Huang, S.; Liu, Y.; Zhang, W.; Dale, K.; Liu, S.; Zhu, J.; Serventi, L. Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Sci. Technol. Int. 2018, 24, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V.; Juskaite, L.; Vas, F.; Hayes, H. Physicochemical properties, texture, and probiotic survivability of oat-based yogurt using aquafaba as a gelling agent. Food Sci. Nutr. 2020, 8, 6426–6432. [Google Scholar] [CrossRef]
- Serventi, L.; Yang, Y.; Bian, Y. Cooking water applications. In Upcycling Legume Water: From Wastewater to Food Ingredients, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–120. [Google Scholar] [CrossRef]
- Yazici, G.; Taspinar, T.; Ozer, M. Aquafaba: A multifunctional ingredient in food production. Biol. Life Sci. Forum 2022, 18, 24. [Google Scholar] [CrossRef]
Legume Seeds | Soaking | Cooking | Reference | ||||
---|---|---|---|---|---|---|---|
Time, h | Temp., °C | S:W Ratio | Method | Time, min | S:W Ratio | ||
chickpea | 10 | ND | ND | traditional | 40 | 1:4 | [14] |
whole peas, shelled peas, white beans | 2 | 100 left at r. t. | 1:4 | traditional | 40–42 (white beans), 20–21 (whole peas), 13–14 (shelled peas) | 1:2.5 | [19] |
10 | 4 | 1:4 | pressure | 6 (white beans), 5 (whole peas), 1 (shelled peas) | 0.5:1.25 | ||
chickpeas | 1–16 | 4–85 | 1:4 | pressure | 20, 30, 60 | 1:1 | [20] |
chickpeas, black soybeans, black beans, yellow soybeans | - | - | - | pressure | 160 | 2:3 | [21] |
chickpeas, lentils, peas, soybeans | 12 | ND | 1:5 | traditional | 30 | 1:5 | [22] |
chickpeas | 16 | ND | 1:3.3 | traditional | 90 | 1:1:75 | [23] |
haricot beans, chickpeas, whole green lentils, split yellow peas | 16 | ND | 1:3.3 | traditional | 60, 90 | 1:1.75 | [24] |
yellow soybeans | 16 | r. t. | 1:3.3 | traditional | 90 | 1:1.75 | [25] |
haricot beans, chickpeas, whole green lentils, split yellow peas | 16 | r. t. | 1:1.75 | traditional | 60, 90 | ND | [26] |
chickpeas | 24 | bd | 1:3 | traditional | 190 | 1:1.5; 1:3.25; 1:5 | [27] |
chickpeas | 16 | 40 | 1:4 | pressure | 30 | 1:1 | [28] |
chickpeas | ND | ND | ND | traditional | 30 | 1:5 | [29] |
chickpeas | 2 | 40 | ND | pressure | 15, 30, 45 | 1:4, 1:2, 2:3 | [30] |
chickpeas | 16 | ND | 1:3.3 | pressure | 20 | 1;3 | [31] |
lima beans | 12 | r. t. | 1:4 | pressure | bd | 1:4 | [32] |
soybeans | - | - | - | pressure | 90 | 1:1.5 | [33] |
chickpeas | 8–10 | ND | ND | traditional | 45 | 1:3, 1:4, 1:5 | [34] |
chickpeas | 16 | 5 | 1:3 | pressure | 30 | 1:2 | [35] |
chickpeas | ND | ND | ND | pressure | 30 | 1:3 | [36] |
Legume Seeds | Chickpea | Yellow Soybean | Bean; Green Lentil; Yellow Pea | Bean; Green Lentil; Yellow Pea | |||||
---|---|---|---|---|---|---|---|---|---|
Energy; kJ/100 g | - | - | 72 | - | - | - | - | - | |
Dry matter; g/ 100 g | 5.1 | 5.1 | 4.9–6.4 | 5.0 | 7.9 | - | 5.59 | 3.3; 4.7; 4.4 | - |
Ash; g/100 g | 0.6 | 0.6 | - | 0.4 | - | - | 0.78 | 0.8; 0.5; 0.4 | - |
Protein; g/100 g | 1.0 | 1.0 | 1.2–1.7 | 1.3 | 1.3 | 0.5–1.0 | 0.68 | 0.7; 1.5; 1.3 | - |
Fat; g/100 g | - | <DL | - | <DL | - | - | <DL | <DL | - |
Available carbohydrates; g/100 g | - | 3.6 | - | 2.6 | - | - | 4.12 | 1.8; 2.7; 2.7 | - |
LMW; g/100 g | 1.2 | 1.2 | - | 0.6 | - | - | 1.66 | 0.7; 0.5; 1.0 | - |
HMW; g/100 g | - | 0.04 | - | 0.7 | - | - | - | 0.2; 0.1; 0.1 | - |
Fiber; g/100 g | 2.4 | 2.4 | - | 0.7 | - | - | 2.46 | 0.9; 2.1; 1.6 | - |
Saponins; mg/g | - | 4.5 | - | - | - | - | 6.4 | 5.9; 12.0; 4.7 | 7.9; 14; 9.8 |
TPC; mg/g | - | - | - | 0.3 | - | - | - | - | 0.3; 0.7; 0.6 |
Tocopherols; μg/mL | - | - | - | 0.1 | - | - | - | - | - |
Tannins; mg/100 g | - | - | - | - | - | 0.5–12.0 | - | - | - |
Reference | [23] | [24] | [42] | [43] | [44] | [45] | [25] | [24] | [26] |
Legume Seeds | Foaming Capacity, % | Foaming Stability, % | Emulsifying Capacity, % | Emulsion Stability, % | Emulsifying Activity Index, m²/g | Reference |
---|---|---|---|---|---|---|
chickpeas | 521–685 | 86–99 | - | - | - | [14] |
182–480 | 74–92 | - | 60–80 | - | [17] | |
- | - | - | 72–76 | - | [20] | |
89 | - | - | - | - | [24] | |
- | - | - | - | 39 | [26] | |
162–324 | 3.4–93 | 3.9–72 | 0–76 | - | [27] | |
127 | 95 | - | - | - | [29] | |
40–290 | 7–58 | - | - | - | [30] | |
259–548 | 42–77 | - | - | - | [31] | |
505–611 | 81–86 | - | - | - | [34] | |
haricot beans; whole green lentils; split yellow peas | 39; 97; 93 | - | - | - | - | [24] |
yellow soybeans | 65 | - | 49 | - | 20 | [25] |
haricot beans; whole green lentils; split yellow peas | - | - | - | - | 23; 47; 16 | [26] |
lima beans | 348–660 | 23–82 | - | - | - | [32] |
green peas | 575–725 | 75–90 | - | - | - | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, J.; Stasiak, D.M.; Libera, J. The Potential of Aquafaba as a Structure-Shaping Additive in Plant-Derived Food Technology. Appl. Sci. 2023, 13, 4122. https://doi.org/10.3390/app13074122
Stasiak J, Stasiak DM, Libera J. The Potential of Aquafaba as a Structure-Shaping Additive in Plant-Derived Food Technology. Applied Sciences. 2023; 13(7):4122. https://doi.org/10.3390/app13074122
Chicago/Turabian StyleStasiak, Joanna, Dariusz M. Stasiak, and Justyna Libera. 2023. "The Potential of Aquafaba as a Structure-Shaping Additive in Plant-Derived Food Technology" Applied Sciences 13, no. 7: 4122. https://doi.org/10.3390/app13074122
APA StyleStasiak, J., Stasiak, D. M., & Libera, J. (2023). The Potential of Aquafaba as a Structure-Shaping Additive in Plant-Derived Food Technology. Applied Sciences, 13(7), 4122. https://doi.org/10.3390/app13074122