Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction Methods
2.2.1. Microwave-Assisted Extraction (MAE)
2.2.2. Solid-Liquid Extraction (SLE)
2.2.3. Supercritical Fluid Extraction (SFE)
2.3. Extract Analyses
2.4. Experimental Design, Statistical Analysis & Process Optimization
3. Results & Discussion
3.1. MAE of Bioactive Compounds
3.1.1. Effect of Time
3.1.2. Effect of Solvent-to-Biomass Ratio
3.1.3. Effect of Temperature
3.1.4. Effect of Microwave Power
3.1.5. Synergistic Effect
3.2. Statistical Analysis & Process Optimization
3.2.1. Regression Model Equations
+ 0.1540 10−3 R2
+ 0.1296 10−3 R2
3.2.2. Optimization of MAE’s Operational Conditions & Model’s Verification
3.3. Comparison of MAE, SLE & SFE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
R2 = 0.9983
LOD = 0.0561 mg/L
LOQ = 0.1700 mg/L
R2 = 0.9997
LOD = 0.0321 mg/L
LOQ = 0.0971 mg/L
R2 = 0.9999
LOD = 0.0224 mg/L
LOQ = 0.0678 mg/L
Appendix B
B.1. Analysis of Variance
B.2. Model Graphs
Yield | Chlorophylls | Carotenoids | IC50 | |||||
---|---|---|---|---|---|---|---|---|
Source | p-Value | p-Value | p-Value | p-Value | ||||
Model | <0.0001 | sign.1 | <0.0001 | sign.1 | <0.0001 | sign.1 | 0.0013 | sign.1 |
T | <0.0001 | sign.1 | 0.0077 | sign.1 | 0.0018 | sign.1 | 0.0019 | sign.1 |
P | 0.4005 | 0.0026 | sign.1 | 0.0008 | sign.1 | 0.2084 | ||
t | 0.0002 | sign.1 | 0.0025 | sign.1 | 0.0085 | sign.1 | 0.4539 | |
R | <0.0001 | sign.1 | <0.0001 | sign.1 | 0.0002 | sign.1 | 0.0194 | |
T × P | 0.3959 | <0.0001 | sign.1 | <0.0001 | sign.1 | 0.0022 | sign.1 | |
T × t | 0.8838 | 0.2082 | ||||||
T × R | 0.0023 | sign.1 | <0.0001 | sign.1 | 0.2619 | |||
P × t | 0.0214 | sign.1 | 0.0173 | sign.1 | 0.0018 | sign.1 | 0.5738 | |
P × R | 0.0007 | sign.1 | 0.0001 | sign.1 | 0.4118 | |||
t × R | ||||||||
T2 | 0.2308 | |||||||
P2 | 0.0011 | sign.1 | 0.0003 | sign.1 | 0.3924 | |||
t2 | 0.0043 | sign.1 | 0.0007 | sign.1 | 0.0070 | sign.1 | ||
R2 | 0.0342 | sign.1 | 0.0162 | sign.1 | 0.0262 | sign.1 | ||
T × P × t | 0.0057 | sign.1 | 0.0162 | sign.1 | ||||
T × P × R | 0.0205 | sign.1 | ||||||
T2 × P | 0.0346 | sign.1 | ||||||
T × W2 | 0.0102 | sign.1 | ||||||
Lack of Fit | 0.3828 | not sign.2 | 0.2323 | not sign.2 | 0.141 | not sign.2 | 0.5726 | not sign.2 |
R 2,3 | 0.9208 | 0.9542 | 0.9637 | 0.8831 | ||||
Adj-R 2,4 | 0.8627 | 0.9206 | 0.9371 | 0.7467 | ||||
Ad. Prec.5 | 19.51 | 21.21 | 23.65 | 10.79 |
References
- Khaligh, S.F.; Asoodeh, A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022, 12, 260. [Google Scholar] [CrossRef] [PubMed]
- Uysal, O.; Uysal, F.O.; Ekinci, K. Determination of fertilizing characteristics of three different microalgae cultivated in raceways in greenhouse conditions could increase soil fertility and product yield. Agron. Ser. Sci. Res. 2016, 59, 15–19. [Google Scholar]
- Morais Junior, W.G.J.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture 2020, 528, 735562. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Cichoński, J.; Chrzanowski, G. Microalgae as a source of valuable phenolic compounds and carotenoids. Molecules 2022, 27, 8852. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, R.; Omar, R.; Siajam, S.I. Characterization on phenolic acids and antioxidant activity of Chlorella sp. microalgae using subcritical water extraction. Sains Malays. 2020, 49, 765–774. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef]
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Rehman, M.U.; Khan, F.; Niaz, K. Introduction to natural products analysis. In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–15. [Google Scholar]
- Destandau, E.; Michel, T.; Elfakir, C. Microwave-assisted extraction. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; The Royal Society of Chemistry: London, UK, 2013; Volume 4. [Google Scholar]
- Krishnan, S.; Abd Ghani, N.; Aminuddin, N.F.; Quraishi, K.S.; Azman, N.S.; Cravotto, G.; Leveque, J.-M. Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renew. Energy 2020, 149, 244–252. [Google Scholar] [CrossRef]
- Moretto, J.A.; de Souza, A.O.; Berneira, L.M.; Brigagão, L.G.G.; de Pereira, C.M.P.; Converti, A.; Pinto, E. Microwave-assisted extraction of fatty acids from cultured and commercial phytoplankton species. Appl. Sci. 2022, 12, 2407. [Google Scholar] [CrossRef]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Shaleh, S.M.R. Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers. Manag. 2014, 84, 227–233. [Google Scholar] [CrossRef]
- Ahmad, N.; Mounsef, J.R.; Lteif, R. A simple and fast experimental protocol for the extraction of xanthophylls from microalga Chlorella luteoviridis. Prep. Biochem. Biotechnol. 2021, 51, 1071–1075. [Google Scholar] [CrossRef]
- Leema, J.T.M.; Jothy, T.P.; Dharani, G. Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2)–Process optimization. Food Chem. 2022, 372, 131151. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Lee, S.Y.; Zhu, L.; Show, P.L. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 2019, 367, 1–8. [Google Scholar] [CrossRef]
- Yu, M.; Chen, M.; Gui, J.; Huang, S.; Liu, Y.; Shentu, H.; He, J.; Fang, Z.; Wang, W.; Zhang, Y. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 2019, 137, 139–150. [Google Scholar] [CrossRef]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulou, I.; Tzima, S.; Pappa, G.D.; Louli, V.; Voutsas, E.; Magoulas, K. Experimental design and optimization of recovering bioactive compounds from Chlorella vulgaris through conventional extraction. Molecules 2021, 27, 29. [Google Scholar] [CrossRef] [PubMed]
- Papamichail, I.; Louli, V.; Magoulas, K. Supercritical fluid extraction of celery seed oil. J. Supercrit. Fluids 2000, 18, 213–226. [Google Scholar] [CrossRef]
- Georgiopoulou, I.; Tzima, S.; Louli, V.; Magoulas, K. Supercritical CO2 extraction of high-added value compounds from Chlorella vulgaris: Experimental design, modelling and optimization. Molecules 2022, 27, 5884. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. Phytoplankton Pigments in Oceanography: Monographs on Oceanographic Methodology; United Nations Educational, Scientific and Cultural Organizations: Paris, France, 1997. [Google Scholar]
- Laina, K.M.; Eleni, P.N.; Tsitseli, K.G.; Krokida, M.K. Process design for the extraction of bioactive compounds from several mediterranean medicinal plants. Chem. Eng. Trans. 2021, 86, 1327–1332. [Google Scholar] [CrossRef]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 2947–2960. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Benmoussa, H.; Béchohra, I.; He, S.; Elfalleh, W.; Chawech, R. Optimization of sonohydrodistillation and microwave assisted hydrodistillation by response surface methodology for extraction of essential oils from Cinnamomum cassia barks. Ind. Crops Prod. 2023, 192, 115995. [Google Scholar] [CrossRef]
- Miyazawa, T.; Nakagawa, K.; Kimura, F.; Nakashima, Y.; Maruyama, I.; Higuchi, O.; Miyazawa, T. Chlorella is an effective dietary source of lutein for human erythrocytes. J. Oleo Sci. 2013, 62, 773–779. [Google Scholar] [CrossRef]
- Kitada, K.; Machmudah, S.; Sasaki, M.; Goto, M.; Nakashima, Y.; Kumamoto, S.; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2009, 84, 657–661. [Google Scholar] [CrossRef]
- Li, H.-B.; Jiang, Y.; Chen, F. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J. Agric. Food Chem. 2002, 50, 1070–1072. [Google Scholar] [CrossRef]
- Ruen-ngam, D.; Shotipruk, A.; Pavasant, P.; Machmudah, S.; Goto, M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem. Eng. Technol. 2012, 35, 255–260. [Google Scholar] [CrossRef]
- Goto, M.; Kanda, H.; Machmudah, S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef]
- Kowallik, W.; Schürmann, R. Chlorophyll a/chlorophyll b ratios of Chlorella vulgaris in blue or red light. In Blue Light Effects in Biological Systems; Springer: Berlin/Heidelberg, Germany, 1984; pp. 352–358. [Google Scholar]
- Marambio, J.; Rodriguez, J.P.; Mendez, F.; Ocaranza, P.; Rosenfeld, S.; Ojeda, J.; Rautenberger, R.; Bischof, K.; Terrados, J.; Mansilla, A. Photosynthetic performance and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) along a gradient of depth and seasonality in the ecoregion of Magellan, Chile. J. Appl. Phycol. 2017, 29, 2575–2585. [Google Scholar] [CrossRef]
- Soroush, D.R.; Solaimanimehr, S.; Azizkhani, M.; Kenari, R.E.; Dehghan, B.; Mohammadi, G.; Sadeghi, E. Optimization of microwave-assisted solvent extraction of hemp (Cannabis sativa L.) seed oil using RSM: Evaluation of oil quality. J. Food Meas. Charact. 2021, 15, 5191–5202. [Google Scholar] [CrossRef]
- Lovrić, V.; Putnik, P.; Bursać Kovačević, D.; Jukić, M.; Dragović-Uzelac, V. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technol. Biotechnol. 2017, 55, 243–250. [Google Scholar] [CrossRef]
- Pasquet, V.; Chérouvrier, J.-R.; Farhat, F.; Thiéry, V.; Piot, J.-M.; Bérard, J.-B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.-P. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Esquivel-Hernández, D.A.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Cuéllar-Bermúdez, S.P.; Mancera-Andrade, E.I.; Núñez-Echevarría, J.E.; García-Pérez, J.S.; Chandra, R.; Parra-Saldívar, R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira Platensis and bioactivity evaluation. Bioresour. Technol. 2017, 224, 618–629. [Google Scholar] [CrossRef]
- Nguyen, N.H.K.; An, N.T.D.; Anh, P.K.; Truc, T.T. Microwave-assisted extraction of chlorophyll and polyphenol with antioxidant activity from Pandanus amaryllifolius Roxb. in Vietnam. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Coimbatore, India, 8–9 April 2021; Volume 1166, p. 012039. [Google Scholar] [CrossRef]
- Yan, M.-M.; Liu, W.; Fu, Y.-J.; Zu, Y.-G.; Chen, C.-Y.; Luo, M. Optimisation of the microwave-assisted extraction process for four main. Food Chem. 2009, 119, 1663–1670. [Google Scholar] [CrossRef]
- Gao, M.; Song, B.-Z.; Liu, C.-Z. Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochem. Eng. J. 2006, 32, 79–83. [Google Scholar] [CrossRef]
- Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Zheng, H.; Chen, R.; Chen, L. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules 2012, 17, 14323–14335. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, X.; Liu, C.; Sun, Y.; Lin, Z.; Liu, H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep. Purif. Technol. 2013, 104, 17–25. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 614–618. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, D.-D.; Shang, A.; Gan, R.-Y.; Li, H.-B. Influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels. Foods 2021, 10, 1432. [Google Scholar] [CrossRef]
- Radojković, M.; Zeković, Z.; Jokić, S.; Vidović, S.; Lepojević, Ž.; Milošević, S. Optimization of sSolid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology. Food Technol. Biotechnol. 2012, 50, 167–176. Available online: https://link.gale.com/apps/doc/A299258662/AONE?u=anon~e39d7148&sid=googleScholar&xid=a817b58e (accessed on 16 February 2023).
- Kim, W.-K.; Chae, H.-J.; Kim, J.-H. Microwave-assisted extraction of homoharringtonine from Cephalotaxus koreana. Biotechnol. Bioprocess Eng. 2010, 15, 481–487. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Shi, B. Optimization of microwave-assisted extraction of flavonoid from Radix Astragali using response surface methodology. Sep. Sci. Technol. 2008, 43, 671–681. [Google Scholar] [CrossRef]
- Camel, V. Microwave-assisted solvent extraction of environmental samples. TrAC Trends Anal. Chem. 2000, 19, 229–248. [Google Scholar] [CrossRef]
- Pan, X.; Liu, H.; Jia, G.; Shu, Y.Y. Microwave-assisted extraction of glycyrrhizic acid from licorice root. Biochem. Eng. J. 2000, 5, 173–177. [Google Scholar] [CrossRef]
- Wang, M.; Tsao, R.; Zhang, S.; Dong, Z.; Yang, R.; Gong, J.; Pei, Y. Antioxidant activity, mutagenicity/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food Chem. Toxicol. 2006, 44, 1522–1529. [Google Scholar] [CrossRef]
- Fratianni, A.; Cinquanta, L.; Panfili, G. Degradation of carotenoids in orange juice during microwave heating. LWT Food Sci. Technol. 2010, 43, 867–871. [Google Scholar] [CrossRef]
- Marquez, U.M.L.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Intern. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Xu, D.-P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.-B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef]
- Shang, A.; Luo, M.; Gan, R.-Y.; Xu, X.-Y.; Xia, Y.; Guo, H.; Liu, Y.; Li, H.-B. Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.). Antioxidants 2020, 9, 678. [Google Scholar] [CrossRef]
- Bachtler, S.; Bart, H.-J. Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food Bioprod. Process. 2021, 125, 1–13. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Aronhime, S.; Calcagno, C.; Jajamovich, G.H.; Dyvorne, H.A.; Robson, P.; Dieterich, D.; Fiel, M.I.; Martel-Laferriere, V.; Chatterji, M.; Rusinek, H.; et al. DCE-MRI of the liver: Effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J. Magn. Reson. Imaging 2014, 40, 90–98. [Google Scholar] [CrossRef]
- Couto, M.F.; Peternelli, L.A.; Barbosa, M.H.P. Classification of the coefficients of variation for sugarcane crops. Ciência Rural 2013, 43, 957–961. [Google Scholar] [CrossRef]
- Perez-Vega, S.; Salmeron, I.; Perez-Reyes, I.; Kwofie, E.; Ngadi, M. Influence of the supercritical fluid extraction (SFE) on food bioactives. In Retention of Bioactives in Food Processing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 309–340. [Google Scholar]
- Yen, H.-W.; Yang, S.-C.; Chen, C.-H.; Chang, J.-S. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour. Technol. 2015, 184, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M.; Goulas, V.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A knowledge base for the recovery of natural phenols with different solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P.; Khan, M.N.; Mushtaq, F.; Sami, S.K. Extraction and quantification of chlorophyll from microalgae Chlorella sp. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Quetta, Pakistan, 2–3 April 2018; Volume 414, p. 012025. [Google Scholar] [CrossRef]
- Morcelli, A.; Cassel, E.; Vargas, R.; Rech, R.; Marcílio, N. Supercritical fluid (CO2+ ethanol) extraction of chlorophylls and carotenoids from Chlorella sorokiniana: COSMO-SAC assisted prediction of properties and experimental approach. J. CO2 Util. 2021, 51, 101649. [Google Scholar] [CrossRef]
- Zaripheh, S.; Erdman, J.W., Jr. Factors that influence the bioavailablity of xanthophylls. J. Nutr. 2002, 132, 531S–534S. [Google Scholar] [CrossRef]
- Serra, A.T.; Silva, S.D.; Pleno de Gouveia, L.; Alexandre, A.M.R.C.; Pereira, C.V.; Pereira, A.B.; Partidário, A.C.; Silva, N.E.; Bohn, T.; Gonçalves, V.S.S. A Single dose of marine chlorella vulgaris increases plasma concentrations of lutein, β-carotene and zeaxanthin in healthy male volunteers. Antioxidants 2021, 10, 1164. [Google Scholar] [CrossRef]
- Watson, S.B. Algal taste and odor. In Algae: Source to treatment AWWA Manual of Water Supply Practices; AWWA Publishing: Denver, CO, USA, 2010; Volume 57, pp. 329–374. [Google Scholar]
- FiorMarkets. Global Carotenoids Market is Expected to Reach USD 3.59 Billion by 2025: Fior Markets. Available online: https://www.globenewswire.com/news-release/2019/10/15/1929461/0/en/Global-Carotenoids-Market-is-expected-to-reach-USD-3-59-billion-by-2025-Fior-Markets.html (accessed on 12 February 2023).
Time (min) | aq. Phosphoric Acid, 1% v/v (% v/v) | Methanol (% v/v) | MTBE (% v/v) |
---|---|---|---|
0 | 4 | 81 | 15 |
15 | 4 | 66 | 30 |
23 | 4 | 16 | 80 |
27 | 4 | 16 | 80 |
27.1 | 4 | 81 | 15 |
35 | 4 | 81 | 15 |
Run | T | P | t | R | Yield | TPC | CHL | sel. CAR | CAR | IC50 |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (watts) | (min) | (mLsolv/ gbiom) | (% w/w) | (mgGA | (mg/ | (mg/ | (mg/ | (mgextr | |
/gextr) | gextr) | gextr) | gextr) | /mgDPPH) | ||||||
1 | 40 | 300 | 5 | 20 | 5.42 | 7.08 | 31.16 | 2.70 | 11.27 | 68.25 |
2 | 40 | 300 | 5 | 90 | 8.02 | 5.23 | 12.13 | 2.82 | 3.87 | 57.95 |
3 | 40 | 300 | 25 | 20 | 8.63 | 8.76 | 25.85 | 3.71 | 9.89 | 60.04 |
4 | 40 | 300 | 25 | 90 | 11.37 | 5.88 | 14.33 | 3.99 | 4.88 | 59.13 |
5 | 40 | 550 | 15 | 55 | 13.19 | 11.53 | 41.39 | 7.44 | 17.59 | 37.82 |
6 | 40 | 800 | 5 | 20 | 8.29 | 8.28 | 62.06 | 7.79 | 21.19 | 37.15 |
7 | 40 | 800 | 5 | 90 | 12.35 | 6.89 | 49.09 | 4.77 | 18.08 | 54.17 |
8 | 40 | 800 | 25 | 20 | 10.33 | 8.06 | 48.87 | 8.48 | 17.53 | 50.36 |
9 | 40 | 800 | 25 | 90 | 15.31 | 6.74 | 34.94 | 5.65 | 12.39 | 54.02 |
10 | 50 | 300 | 15 | 55 | 15.25 | 9.20 | 29.88 | 4.50 | 11.90 | 50.18 |
11 | 50 | 550 | 5 | 55 | 11.44 | 6.53 | 39.13 | 5.22 | 13.92 | 59.25 |
12 | 50 | 550 | 15 | 20 | 9.26 | 8.84 | 67.87 | 11.84 | 23.09 | 42.00 |
13 | 50 | 550 | 15 | 55 | 11.66 | 11.41 | 51.5 | 5.62 | 19.48 | 41.87 |
14 | 50 | 550 | 15 | 55 | 11.98 | 13.09 | 52.8 | 5.48 | 18.65 | 40.49 |
15 | 50 | 550 | 15 | 55 | 13.30 | 11.06 | 46.79 | 4.91 | 20.4 | 48.69 |
16 | 50 | 550 | 15 | 90 | 14.29 | 9.73 | 39.06 | 7.21 | 16.03 | 53.58 |
17 | 50 | 550 | 25 | 55 | 13.71 | 9.19 | 29.08 | 8.17 | 11.22 | 56.42 |
18 | 50 | 800 | 15 | 55 | 13.79 | 9.06 | 34.70 | 5.40 | 12.26 | 53.80 |
19 | 60 | 300 | 5 | 20 | 12.68 | 7.95 | 64.01 | 8.59 | 17.53 | 50.70 |
20 | 60 | 300 | 5 | 90 | 15.35 | 8.39 | 35.11 | 4.99 | 14.42 | 60.47 |
21 | 60 | 300 | 25 | 20 | 10.10 | 8.84 | 47.40 | 4.46 | 17.36 | 51.77 |
22 | 60 | 300 | 25 | 90 | 16.48 | 6.04 | 42.82 | 3.79 | 16.57 | 65.64 |
23 | 60 | 550 | 15 | 55 | 15.02 | 10.74 | 48.09 | 4.41 | 19.66 | 63.10 |
24 | 60 | 800 | 5 | 20 | 11.77 | 8.27 | 30.87 | 3.96 | 10.61 | 65.00 |
25 | 60 | 800 | 5 | 90 | 13.72 | 6.23 | 38.12 | 5.80 | 15.75 | 71.69 |
26 | 60 | 800 | 25 | 20 | 17.61 | 6.88 | 22.03 | 3.67 | 7.40 | 55.94 |
27 | 60 | 800 | 25 | 90 | 20.18 | 8.38 | 24.23 | 6.32 | 9.85 | 56.43 |
CV * (%) | 5.77 | 7.48 | 5.12 | 5.78 | 3.66 | 8.20 |
Factor | Value | |
---|---|---|
T (°C) | 60 | |
P (watts) | 300 | |
t (min) | 14 | |
R (mLsolv/gbiom) | 22 | |
Response | Predicted | Experimental |
Yield (% w/w) | 12.00 | 11.14 |
Total Chlorophylls (mg/gextr) | 67.73 | 63.36 |
Selected Carotenoids (mg/gextr) | n/a * | 7.06 |
Total Carotenoids (mg/gextr) | 22.83 | 24.88 |
Total Phenolics (mg/gextr) | n/a * | 9.34 |
IC50 (mgextr/mgDPPH) | 43.00 | 40.49 |
Parameter | SLE | MAE | SFE | SFE-10% Ethanol |
---|---|---|---|---|
Solvent | aq. Ethanol 90% v/v | aq. Ethanol 90% v/v | CO2 | CO2-Ethanol 90/10 w/w |
Solvent-to-biomass ratio (mLsolv/gbiom) | 30 | 22 | 100 | 100 |
Stirring (rpm) | 500 | 500 | n/a* | n/a* |
Temperature (°C) | 30 | 60 | 60 | 60 |
Pressure (bar) | 1 | 1 | 250 | 250 |
Solvent flow rate (g/min) | n/a * | n/a* | 40 | 40 |
Microwave power (watts) | n/a * | 300 | n/a* | n/a* |
Duration (h) | 24 | 0.23 | 3.3 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiopoulou, I.; Tzima, S.; Louli, V.; Magoulas, K. Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction. Appl. Sci. 2023, 13, 2740. https://doi.org/10.3390/app13042740
Georgiopoulou I, Tzima S, Louli V, Magoulas K. Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction. Applied Sciences. 2023; 13(4):2740. https://doi.org/10.3390/app13042740
Chicago/Turabian StyleGeorgiopoulou, Ioulia, Soultana Tzima, Vasiliki Louli, and Kostis Magoulas. 2023. "Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction" Applied Sciences 13, no. 4: 2740. https://doi.org/10.3390/app13042740
APA StyleGeorgiopoulou, I., Tzima, S., Louli, V., & Magoulas, K. (2023). Process Optimization of Microwave-Assisted Extraction of Chlorophyll, Carotenoid and Phenolic Compounds from Chlorella vulgaris and Comparison with Conventional and Supercritical Fluid Extraction. Applied Sciences, 13(4), 2740. https://doi.org/10.3390/app13042740