Characteristics of P Adsorption by Profundal Bottom Deposits of Kortowskie Lake (Poland), Restored by the Hypolimnetic Withdrawal Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Water and Sediment Analysis
2.4. Phosphorus Adsorption Experiments
- (a)
- Freundlich model equation [27]:
- (b)
- BET adsorption model, which describes multilayer adsorption [30]:
- (c)
- General Langmuir-Freundlich adsorption model [31]:
2.5. Statistical Analysis—RDA
3. Results
3.1. Characteristic of the Water-Sediment Interface Chemistry as a Background for Sediment P Adsorption Abilities
3.2. Results of Phosphorus Adsorption Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Schindler, D.W. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B 2012, 279, 4322–4333. [Google Scholar] [CrossRef] [PubMed]
- Orihel, D.W.; Baulch, H.M.; Casson, N.J.; North, R.L.; Parsons, C.T.; Seckar, D.C.M.; Venkiteswaran, J.J. Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Can. J. Fish. Aquat. Sci. 2017, 74, 2005–2029. [Google Scholar] [CrossRef]
- Water Framework Directive 2000/60/WE, Polish Version. Available online: www.mos.gov.pl (accessed on 27 November 2022).
- Schallenberg, M.; de Winton, M.D.; Verburg, P.; Kelly, D.J.; Hamill, K.D.; Hamilton, D.P. Ecosystem Services of Lakes. In Ecosystem Services in New Zealand–Conditions and Trends; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 203–225. [Google Scholar]
- Lossow, K. Ochrona i rekultywacja jezior. Teoria a praktyka (Protection and restoration of lakes. Theory and practice). Idee Ekol. 1998, 13, 55–70. (In Polish) [Google Scholar]
- Klapper, H. Technologies for lake restoration. J. Limnol. 2003, 62 (Suppl. 1), 73–90. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press, Taylor&Francis Group, LLC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Augustyniak, R.; Grochowska, J.; Łopata, M.; Parszuto, K.; Tandyrak, R.; Tunowski, J. Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method 15 years after the termination of lake restoration procedures. Water 2019, 11, 2175. [Google Scholar] [CrossRef]
- Kang, L.; Mucci, M.; Lürling, M. Influence on temperature and pH on phosphate removal efficiency of different sorbents used for lake restoration. Sci. Total Environ. 2021, 812, 151489. [Google Scholar] [CrossRef] [PubMed]
- Mientki, C.; Teodorowicz, M. 1996. Assessment of the Effects of Hypolimnion Water Removal from the Kortowskie Lake. In Chemistry for the Protection of the Environment 2; Plenum Press: New York, NY, USA, 1996; pp. 361–374. [Google Scholar]
- Mientki, C.; Wiśniewski, G. Characteristics of limnological seasons in restored Lake Kortowskie in years 1952–2002. Limnol. Rev. 2003, 3, 159–164. [Google Scholar]
- Nürnberg, G.K. Lake responses to long-term hypolimnetic withdrawal treatments. Lake Reserv. Manag. 2007, 23, 388–409. [Google Scholar] [CrossRef]
- Silvonen, S.; Niemistö, J.; Myyryläinen, J.O.; Kinnunen, O.K.; Huotari, S.; Nurminen, L.; Horppila, J.; Jilbert, T. Extracting phosphorus and other elements from lake water: Chemical processes in a hypolimnetic withdrawal and treatment system. Wat. Res. 2022, 218, 118507. [Google Scholar] [CrossRef]
- Silvonen, S.; Niemist¨o, J.; Csibr’an, A.; Jilbert, T.; Torma, P.; Kr’amer, T.; Nurminen, L.; Horppila, J. A biogeochemical approach to evaluate the optimization and effectiveness of hypolimnetic withdrawal. Sci. Total Environ. 2021, 755, 143202. [Google Scholar] [CrossRef]
- Renman, A.; Renman, G. Removal of phosphorus from hypolimnetic lake water by reactive filter material in a recirculating system-laboratory trial. Water 2022, 14, 819. [Google Scholar] [CrossRef]
- Teodorowicz, M. Czynniki Wpływające na Bilans Biogenów i Stan Troficzny Jeziora Kortowskiego (Factors Influencing on Nutrient Balance and Trophic State of Kortowskie Lake). Ph.D. Thesis, Akademia Rolniczo, Techniczna, Olsztyn, 1995. (In Polish). [Google Scholar]
- Dunalska, J. Wpływ Ograniczonego Usuwania Wód Hypolimnionu na Wybrane Parametry Fizyko-Chemiczne i Bilans Biogenów w Wodzie Jeziora Kortowskiego (The Influence of Limited Hypolimnetic Withrawal on the Selected Physico-Chemical Properties and Nutrient Balance of the Kortowskie Lake Water). Ph.D. Thesis, Akademia Rolniczo, Techniczna, Olsztyn, 1999. (In Polish). [Google Scholar]
- Lossow, K.; Gawrońska, H.; Mientki, C.; Łopata, M.; Wiśniewski, G. Jeziora Olsztyna, Stan Troficzny, Zagrożenia (Lakes of Olsztyn. Trophic State, Threats); Edycja, S.C.: Olsztyn, Poland, 2005. [Google Scholar]
- Wiśniewski, G. Skład Chemiczny Osadów Dennych Jeziora Kortowskiego po 50 Latach Rekultywacji (Bottom Sediment Chemical Composition of Kortowskie Lake after 50 Years of Restoration. In Ochrona i Rekultywacja Jezior (Protection and Restoration of Lakes); Wisniewski, R., Ed.; Polskie Zrzeszenie Techników Sanitarnych Oddział Toruń: Toruń, Poland, 2007; pp. 191–200. (In Polish) [Google Scholar]
- Tadajewski, A. Chemizm osadów dennych Jeziora Kortowskiego w 1955 roku (Chemistry of bottom sediments of Kortowskie Lake). Zesz. Nauk. WSR Olszt. 1965, 19, 59–79. (In Polish) [Google Scholar]
- Hermanowicz, W.; Dożańska, W.; Dojlido, J.; Koziorowski, B.; Zerbe, J. Physical and Chemical Analysis of Water and Sewage (Fizyczno–Chemiczne Badanie Wody i Ścieków); Arkady: Warszawa, Poland, 1999. (In Polish) [Google Scholar]
- van Hullebush, E.; Auvray, F.; Deluchat, V.; Chazal, P.; Baudu, M. Phosphorus fractionation and short-term mobility in the surface sediment of a polymictic shallow lake treated with low dose of alum (Courtille Lake, France). Water Air Soil Pollut. 2003, 146, 75–91. [Google Scholar] [CrossRef]
- Huang, L.; Fu, L.; Jin Ch Gielen, G.; Lin, X.; Wang, H.; Zhang, Y. Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes. Ecol. Eng. 2011, 37, 1515–1522. [Google Scholar] [CrossRef]
- Pant, H.K.; Reddy, K.R. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. J.Environ. Qual. 2001, 30, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, R.; Serafin, A. Use of different adsorption models for characterizing P adsorption by the bottom sediment of four degraded urban lakes (Kashubian Lakeland, northern Poland). Desalination Water Treat. 2021, 218, 63–79. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Kuczajowska-Zadrożna, M.; Mielcarek, A. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3. Int. J. Biol. Macromol. 2017, 104, 1280–1293. [Google Scholar] [CrossRef]
- Łukawska –Matuszewska, K.; Voght, R.D.; Xie, R. Phosphorus pools and internal loading in a eutrophic lake with gradients in sediment geochemistry created by land use in the watershed. Hydrobiologia 2013, 713, 183–197. [Google Scholar] [CrossRef]
- Kosobucki, P.; Buszewski, B. (Eds.) Fizykochemiczne Metody Analizy w Chemii środowiska. Cz.2., (Physical and Chemical Analytical Methods in the Environmental Chemistry. Part. 2); Wyd. Nauk; UMK: Toruń, Poland, 2016. (In Polish) [Google Scholar]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Hinz, C. Description of sorption data with isotherm equations. Geoderma 2001, 99, 225–243. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Özkundakci, D.; Hamilton, D.P.; Gibbs, M.M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 2010, 661, 5–20. [Google Scholar] [CrossRef]
- Søndergaard, M. Nutrient Dynamics in Lakes–With Emphasis on Phosphorus, Sediment and Lake Restoration. Ph.D. Thesis, National Environmental Research Institute, University of Aarhus, Aarhus, Denmark, 2007; 276p. [Google Scholar]
- Nürnberg, G.K. Hypolimnetic withdrawal as a lake restoration technique: Determination of feasibility and continued benefits. Hydrobiologia 2019, 847, 4487–4501. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. (Eds.) Atlas Klimatu Polski 1991-2020 (Atlas of Climate of Poland 1991–2020); Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2022; 126p. [Google Scholar]
- Augustyniak, R. Wpływ Czynników Fizyczno-Chemicznych i Mikrobiologicznych na Zasilanie Wewnętrzne Fosforem wód Wybranych Jezior Miejskich (The Influence of Physical, Chemical and Microbiological Factors on the Phosphorus Internal Loading to the Water of Selected Urban Lakes); Polish Academy of Sciences, Environmental Engineering Committee Publishing House: Lublin, Poland, 2018. (In Polish) [Google Scholar]
- Golterman, H.L. The calcium and iron-bound phosphate phase diagram. Hydrobiologia 1988, 159, 149–151. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Al–Ghouti, M.A.; Da’ana, D.A. Gudelines for the use and interpretation of isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Cyr, H.; Mc Cabe, S.K.; Nürnberg, G.K. Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified lake. Wat. Res. 2009, 43, 1654–1666. [Google Scholar] [CrossRef]
- Bańkowska-Sobczak, A.; Blazejczyk, A.; Eiche, E.; Fisher, U.; Popek, Z. Phosphorus inactivation in lake sediments using calcite materials and controlled resuspension—Mechanisms and efficiency. Minerals 2020, 10, 223. [Google Scholar] [CrossRef]
- Tu, L.; Zander, P.; Szidat, S.; Lloren, R.; Grosjean, M. The influences of historic lake trophy and mixing regime changes on long-term phosphorus fraction retention in sediments of deep eutrophic lakes: A case study from Lake Burgäschi, Switzerland. Biogeosciences 2020, 17, 2715–2729. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Area | 89.7 ha |
Maximum depth | 17.2 m |
Mean depth | 5.9 m |
Halbfass’ relative depth | 0.02 |
Depth index | 0.34 |
Volume | 5323 thousand m3 |
Maximum length | 1660 m |
Maximum width | 715 m |
Length index | 2.3 |
Mean width | 541 m |
Shoreline length | 4800 m |
Shoreline development index | 1.43 |
Partial Catchments | Area [ha] | % of Area |
---|---|---|
Kortówka River (with Ukiel Lake) catchment | 2588.7 | 73.0 |
Leśny Stream catchment | 969.9 | 27.4 |
Drain pipeline catchment | 59.2 | 1.7 |
Starodworski Stream (with Starodworskie Lake) catchment | 58.1 | 1.6 |
Parkowy Stream catchment | 34.6 | 1.0 |
Tested Adsorption Model | Characteristic | Sediment Layer | |||
---|---|---|---|---|---|
0–5 cm | 5–10 cm | 10–15 cm | 15–20 cm | ||
Freundlich | 1/n | 1.374 | 1.615 | 1.293 | 1.164 |
K [dm3 kg−1] | 1893.093 | 2736.946 | 3693.590 | 3291.355 | |
R2 | 0.9825 | 0.9843 | 0.9709 | 0.9871 | |
BET | SBET [mg P kg−1] | 15,649.34 | 7153.802 | 354.64 | 425.638 |
kBET [dm3 mg−1] | 0.23 | 0.158 | 7.2073 | 6.39 | |
Cs [mg dm−3] | 3.44 | 1.444 | 0.5623 | 0.6169 | |
R2 | 0.9707 | 0.9892 | 0.9952 | 0.9962 | |
General Freundlich-Langmuir | SFL [mg P kg−1] | 2121.286 | 37,641.93 | 45,343.34 | 18,634.84 |
kFL [dm3 mg−1] | 1.741 | 0.21 | 0.14 | 0.26 | |
1/n (α) | 2.547 | 1.64 | 1.26 | 1.21 | |
R2 | 0.9985 | 0.9837 | 0.9701 | 0.9859 | |
Other parameters | S0 [mg P kg−1] | 20.08 | 6.61 | 0.26 | 0.22 |
EPC0 [mg dm−3] | 0.037 | 0.023 | 0.0004 | 0.0003 | |
ΔG [kJ mol−1] | −16.07 | −16.46 | −19.81 | −20.38 | |
P retention [%] | 99.25 | 99.35 | 99.62 | 99.63 |
Tested Adsorption Model | Characteristic | Sediment Layer | |||
---|---|---|---|---|---|
0–5 cm | 5–10 cm | 10–15 cm | 15–20 cm | ||
Freundlich | 1/n | 1.616 | 1.802 | 1.952 | 1.263 |
K [dm3 kg−1] | 2010.35 | 1805.89 | 4151.65 | 1218.84 | |
R2 | 0.9796 | 0.9964 | 0.9968 | 0.9842 | |
BET | SBET [mg P kg−1] | 13,121.06 | 6080.325 | 2880.0 | 498.84 |
kBET [dm3 mg−1] | 0.14 | 0.163 | 0.221 | 2.266 | |
Cs [mg dm−3] | 2.37 | 1.851 | 0.983 | 1.32 | |
R2 | 0.9607 | 0.9835 | 0.9931 | 0.9887 | |
General Freundlich-Langmuir | SFL [mg P kg−1] | 2136.34 | 3382.263 | 22,058.75 | 23,991.0 |
kFL [dm3 mg−1] | 1.666 | 0.966 | 0.45 | 0.10 | |
1/n (α) | 2.852 | 2.250 | 2.00 | 1.28 | |
R2 | 0.9979 | 0.9987 | 0.9966 | 0.9837 | |
Other parameters | S0 [mg P kg−1] | 21.23 | 10.89 | 4.89 | 2.97 |
EPC0 [mg dm−3] | 0.050 | 0.059 | 0.031 | 0.009 | |
ΔG [kJ mol−1] | −15.66 | −15.19 | −16.14 | −15.83 | |
P retention [%] | 98.62 | 98.74 | 98.99 | 96.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyniak-Tunowska, R.; Karczmarczyk, R.; Łopata, M.; Grochowska, J.; Tunowski, J.; Tandyrak, R. Characteristics of P Adsorption by Profundal Bottom Deposits of Kortowskie Lake (Poland), Restored by the Hypolimnetic Withdrawal Method. Appl. Sci. 2023, 13, 1861. https://doi.org/10.3390/app13031861
Augustyniak-Tunowska R, Karczmarczyk R, Łopata M, Grochowska J, Tunowski J, Tandyrak R. Characteristics of P Adsorption by Profundal Bottom Deposits of Kortowskie Lake (Poland), Restored by the Hypolimnetic Withdrawal Method. Applied Sciences. 2023; 13(3):1861. https://doi.org/10.3390/app13031861
Chicago/Turabian StyleAugustyniak-Tunowska, Renata, Rafał Karczmarczyk, Michał Łopata, Jolanta Grochowska, Jacek Tunowski, and Renata Tandyrak. 2023. "Characteristics of P Adsorption by Profundal Bottom Deposits of Kortowskie Lake (Poland), Restored by the Hypolimnetic Withdrawal Method" Applied Sciences 13, no. 3: 1861. https://doi.org/10.3390/app13031861
APA StyleAugustyniak-Tunowska, R., Karczmarczyk, R., Łopata, M., Grochowska, J., Tunowski, J., & Tandyrak, R. (2023). Characteristics of P Adsorption by Profundal Bottom Deposits of Kortowskie Lake (Poland), Restored by the Hypolimnetic Withdrawal Method. Applied Sciences, 13(3), 1861. https://doi.org/10.3390/app13031861