Characterizing Probiotic Lactic Acid Bacteria from Buffalo Milk Fermentation (Dadih) for Beef Biopreservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Lactic Acid Bacteria from Dadih
2.2. Production of CFS (Cell-Free Supernatants) from Lactic Acid Bacteria
2.3. Lactic Acid Bacteria CFS Antimicrobial Activity Test
2.4. Test of Lactic Acid Bacteria Resistance to Acids, Bile Salts, and Temperature
2.5. Auto-Aggregation and Co-Aggregation Ability Test
2.6. Beef Biopreservation Test with CFS
2.7. Physical Analysis of Beef
2.8. Data Analysis
3. Results
3.1. Isolation of Lactic Acid Bacteria from Dadih
3.2. Lactic Acid Bacteria CFS Antimicrobial Activity Test
3.3. Characterization of Probiotic Candidate Lactic Acid Bacteria
3.4. Effect of Addition of CFS LAB on Beef Quality
3.4.1. Microbiology Quality
3.4.2. Physical Quality
4. Discussion
4.1. Isolation and Characterization of Probiotic Candidate Lactic Acid Bacteria from Dadih
4.2. Effect of Addition of CFS from LAB on Beef Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez, O.A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2021, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.S.; Aliakbarlu, J.; Tajik, H.; Mahmoudian, A. Anti-listeria activity and shelf -life extension effects of Lactobacillus along with garlic extract in ground beef. J. Food Saf. 2019, 39, 6. [Google Scholar]
- Nath, S.; Chowdhury, S.; Chowdhury, S.; Dora, K.; Sarkar, S. Role of biopreservation in improving food safety and storage. Int. J. Eng. Res. Appl. 2014, 4, 26–32. [Google Scholar]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Beltrán, J.; Bellés, M. Effect of freezing on the quality of meat. Ref. Modul. Food Sci. 2018, 2, 493–497. [Google Scholar]
- Jiménez, C.F.; Herrero, A.M.; Cofrades, S.; Ruiz, C.C. Meat: Eating quality and preservation. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 685–692. [Google Scholar]
- Batiha, G.E.; Hussein, D.; Algammal, A.; George, T.; Jeandet, P.; Al-snafi, A.; Tiwari, A.; Pamplona, J.; Mariana, C.; Thorat, N.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.; Almasi, H.; Alizadeh, A.; Guimarães, J.; Yılmaz, N.; Lotfi, A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef] [PubMed]
- Daba, G.M.; Elkhateeb, W.A. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatal. Agric. Biotechnol. 2020, 28, 101750. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Yuliana, T.; Hayati, F.; Cahyana, Y.; Rialita, T.; Mardawati, E.; Harahap, B.; Safitri, R. Indigenous bacteriocin of lactic acid bacteria from ‘Dadih’ a fermented buffalo milk from West Sumatra, Indonesia as chicken meat preservative. Pak. J. Biol. Sci. 2020, 23, 1572–1580. [Google Scholar] [CrossRef]
- Mustopa, A.Z.; Fatimah, F. Diversity of lactic acid bacteria isolated from Indonesian traditional fermented foods. Microbiol. Indones. 2014, 8, 48–57. [Google Scholar] [CrossRef]
- Pato, U.; Yusuf, Y.; Fitriani, S.; Jonnadi, N.; Sri Wahyuni, M.; Feruni, J.; Jaswir, I. Inhibitory activity of crude bacteriocin produced by lactic acid bacteria isolated from dadih against listeria monocytogenes. Biodiversitas 2020, 21, 1295–1302. [Google Scholar] [CrossRef]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 2, 90. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, H.; Zhang, C.; Yu, J.; Lu, Z. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables. J. Agric. Food Chem. 2013, 47, 11676–11682. [Google Scholar] [CrossRef]
- Heidari, Z.; Ghasemi, M.F.; Modiri, L. Antimicrobial activity of bacteriocin produced by a new Lactobacillus curvatus sp.LAB-3H isolated from traditional yogurt. Arch. Microbiol. 2021, 1, 101. [Google Scholar]
- Zhang, J.; Liu, G.; Li, P.; Qu, Y. Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control 2010, 21, 198–202. [Google Scholar] [CrossRef]
- Yuliana, T.; Pratiwi, A.R.; Zahratunnisa, S.; Rialita, T.; Cahyana, Y.; Harlina, P.W.; Marta, H. Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih. Appl. Sci. 2023, 13, 4277. [Google Scholar] [CrossRef]
- Sunaryanto, R.; Marwoto, B. Isolation, identification, and characterization of lactic acid bacteria from buffalo milk curd. J. Sains. dan Teknol. Indones. 2013, 14, 228–233. [Google Scholar]
- Tenea, G.N.; Guaña, J.M. Inhibitory substances produced by native lactobacillus plantarum UTNCys5-4 control microbial population growth in meat. J. Food Qual. 2019, 2019, 9516981. [Google Scholar] [CrossRef]
- Ramadhanti, N.; Melia, S.; Hellyward, J.; Purwati, E. Characteristics of lactic acid bacteria isolated from palm sugar from West Sumatra, Indonesia and their potential as a probiotic. Biodiversitas 2021, 22, 2610–2616. [Google Scholar] [CrossRef]
- Hojjati, M.; Behabahani, B.A.; Falah, F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb. Pathog. 2020, 147, 104420. [Google Scholar] [CrossRef]
- Panjaitan, R.; Nuraida, L.; Dewanti, H.R. Selection of lactic acid bacteria isolates from tempe and tape as probiotic candidates. J. Food Technol. Ind. 2018, 29, 175–184. [Google Scholar]
- SNI 3932:2008; Quality of Carcass and Beef. Indonesian National Standards. Badan Standarisasi Nasional: Jakarta, Indonesia, 2008.
- Hafid, H.; Napirah, A.; Meliana, L. Effect of defrosting on pH, cooking loss and color of frozen bali beef. Proc. Natl. Semin. Anim. Husb. Vet. Technol. 2017, 275–279. [Google Scholar]
- Ghanbari, M.; Jami, M.; Domig, K.J.; Kneifel, W. Seafood biopreservation by lactic acid bacteria: A review. LWT—Food Sci. Technol. 2013, 54, 315–324. [Google Scholar] [CrossRef]
- Pan, X.; Chen, F.; Wu, T.; Tang, H.; Zhao, Z. The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control 2009, 20, 598–602. [Google Scholar] [CrossRef]
- Kimoto, H.; Kurisaki, J.; Tsuji, N.M.; Ohmomo, S.; Okamoto, T. Lactococci as probiotic strains: Adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett. Appl. Microbiol. 1999, 29, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Ijong, F.; Suwetja, I.K. Viability of Edwardsiella tarda and Esherichia coli preserved with glycerol-tryptone soy broth (TSB) kept at freezing temperature. Aquat. Sci. Manag. 2013, 1, 154. [Google Scholar] [CrossRef]
- Basuki, A.T.; Prawoto, N. Regression Analysis in Economics and Business Research. Depok Rajawali Pers. 2015, 1, 1–18. [Google Scholar]
Code | Catalase | Gram Staining | Cell Shape | Motility |
---|---|---|---|---|
DK1 | (−) | (+) | Bacillus | (−) |
DK2 | (−) | (+) | Bacillus | (−) |
DK3 | (−) | (+) | Bacillus | (−) |
DK4 | (−) | (-) | Bacillus | (*) |
DK5 | (−) | (-) | Bacillus | (*) |
Code | Bacteria | Inhibition Zone Diameter (mm) | Inhibitory Activity Level |
---|---|---|---|
DK1 | Salmonella sp. | 11.5 ± 0.71 | Moderate |
E. coli | 13.0 ± 1.41 | Strong | |
DK2 | Salmonella sp. | 9.5 ± 1.41 | Moderate |
E. coli | 8.5 ± 0.71 | Weak | |
DK3 | Salmonella sp. | 8.0 ± 0.00 | Weak |
E. coli | 8.5 ± 1.41 | Weak |
Auto-Aggregation (%) | Co-Aggregation (%) | ||
---|---|---|---|
Lactic acid bacteria | 89.21 ± 0.27 | Salmonella sp. | E. coli |
46.11 ± 1.24 | 52.69 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuliana, T.; Tyano, F.N.; Harlina, P.W.; Cahyana, Y.; Marta, H.; Krama, A. Characterizing Probiotic Lactic Acid Bacteria from Buffalo Milk Fermentation (Dadih) for Beef Biopreservation. Appl. Sci. 2023, 13, 13089. https://doi.org/10.3390/app132413089
Yuliana T, Tyano FN, Harlina PW, Cahyana Y, Marta H, Krama A. Characterizing Probiotic Lactic Acid Bacteria from Buffalo Milk Fermentation (Dadih) for Beef Biopreservation. Applied Sciences. 2023; 13(24):13089. https://doi.org/10.3390/app132413089
Chicago/Turabian StyleYuliana, Tri, Farah Nabilla Tyano, Putri Widyanti Harlina, Yana Cahyana, Herlina Marta, and Annisa Krama. 2023. "Characterizing Probiotic Lactic Acid Bacteria from Buffalo Milk Fermentation (Dadih) for Beef Biopreservation" Applied Sciences 13, no. 24: 13089. https://doi.org/10.3390/app132413089
APA StyleYuliana, T., Tyano, F. N., Harlina, P. W., Cahyana, Y., Marta, H., & Krama, A. (2023). Characterizing Probiotic Lactic Acid Bacteria from Buffalo Milk Fermentation (Dadih) for Beef Biopreservation. Applied Sciences, 13(24), 13089. https://doi.org/10.3390/app132413089