Assessment of Internal and External Factors Causing Slow-Moving Landslides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overlap Analysis of Landslide Hazard Map and Slow-Moving Landslide Area
2.2. Analysis of Stratigraphy, Topography, and the Scale of Occurrence
2.3. Analysis of Rainfall Effects
3. Results and Discussion
3.1. Overlap Analysis
3.2. Analysis of Stratigraphy, Topography, and the Scale of Occurrence
3.3. Analysis of Rainfall Effects
3.3.1. Effects of Rainfalls
3.3.2. Correlation Analysis of the Scale of Occurrence of Slow-Moving Landslides and Rainfall Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senanayake, A.; Fernando, N.; Wasana, M.; Amaratunga, D.; Haigh, R.; Malalgoda, C.; Jayakody, C. Landslide induced displacement and relocation option: A case study of owner driven settings in Sri Lanka. Sustainability 2022, 14, 1906. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2020: Key Findings; FAO: Rome, Italy, 2000; p. 1. [Google Scholar] [CrossRef]
- Das, G.; Lepcha, K. Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola River Basin of Darjeeling Himalaya, India. SN Appl. Sci. 2019, 1, 1453. [Google Scholar] [CrossRef]
- Klose, M.; Maurischat, P.; Damm, B. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides 2016, 13, 183–199. [Google Scholar] [CrossRef]
- Korea Forest Service. Landslide Information System: Landslide Occurrence Trends 2023. Available online: https://sansatai.forest.go.kr (accessed on 13 September 2023). (In Korean).
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook: A Guide to Understanding Landslides (Circular 1325); U.S. Geological Survey (USGS): Reston, VA, USA, 2008; pp. 4–26.
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Woo, B.; Park, J.; Choi, H.; Jeon, G.; Kim, K. A study on the characteristics of the landslide in Hyuseok-Dong (I): Topographical characteristics and surface displacement. J. Korean Soc. For. Sci. 1996, 85, 565–570, (In Korean with English Abstract). [Google Scholar]
- Takaya, S. Facts of Land Creep; Kajima Publisher: Tokyo, Japan, 2017; p. 255. (In Japanese) [Google Scholar]
- Tian, S.; Hu, G.; Chen, N.; Rahman, M.; Ni, H.; Somos-Valenzuela, M. Effects of tectonic setting and hydraulic properties on silent large-scale landslides: A case study of the Zhaobishan landslide, China. Int. J. Disaster Risk Sci. 2023, 14, 600–617. [Google Scholar] [CrossRef]
- National Institute of Forest Science. 15 Things Needed to be Known about Land Creeps in a Nutshell; National Institute of Forest Science: Seoul, Republic of Korea, 2021; p. 4. (In Korean) [Google Scholar]
- Miao, F.; Wu, Y.; Török, Á.; Li, L.; Xue, Y. Centrifugal model test on a riverine landslide in the Three Gorges Reservoir induced by rainfall and water level fluctuation. Geosci. Front. 2022, 13, 101378. [Google Scholar] [CrossRef]
- Fang, K.; Tang, H.; Li, C.; Su, X.; An, P.; Sun, S. Centrifuge modelling of landslides and landslide hazard mitigation: A review. Geosci. Front. 2023, 14, 101493. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Tang, L.; Gu, X.; Wang, L. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res. 2022, 123, 41–53. [Google Scholar] [CrossRef]
- Choi, K. Land creep and geology in Korea. In Forest Environment; Won, H., Ahn, B.Y., Kim, J.H., Shim, W.B., Jeong, Y.S., Eds.; Korean Society of Forest Environment Research Publication No. 21; Korea Society of Forest Environment Research: Suwon, Republic of Korea, 2018; pp. 108–117. (In Korean) [Google Scholar]
- Lee, S.; Sun, G. A study on landslide characteristics by using shear strength between rock and soil. Inst. Ind. Technol. J. Univ. Seoul 2003, 11, 1–7, (In Korean with English Abstract). [Google Scholar]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Lee, M.; Park, Y.; Kwak, J. Correlation of deep landslide occurrence and variation of groundwater level. J. Korea Soc. For. Eng. Technol. 2017, 15, 1–12, (In Korean with English Abstract). [Google Scholar]
- Lee, M.; Park, J.; Park, Y. Analysis of characteristics using geotechnical investigation on the slow-moving landslide in the Pohang-si area. J. Korean Soc. For. Sci. 2019, 108, 233–240, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Choi, J.; Choi, B.; Kim, N.; Lee, C.; Seo, J.; Jeon, B. Estimation of potential risk and numerical simulations of landslide disaster based on UAV photogrammetry. KSCE J. Civil Environ. Eng. Res. 2021, 41, 675–686, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Kim, K.; Kwon, I. Delineation of the slip weak zone of land creeping with integrated geophysical methods and slope stability analysis. J. Eng. Geol. 2020, 30, 289–302, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Lee, S.; Cho, K.; Kim, J. Interpretation of electrical resistivity tomogram with contents of clay minerals for the land creeping area. J. Eng. Geol. 2021, 31, 187–197, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Hilley, G.E.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 2013, 377–378, 239–247. [Google Scholar] [CrossRef]
- Jeon, B.; Lee, S. A study on the effect of collector well on the land creep slope. J. Eng. Geol. 2019, 29, 123–136, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Kim, N.; Choi, B.; Choi, J.; Jeon, B. Time series analysis of soil creep on cut slopes using unmanned aerial photogrammetry. J. Eng. Geol. 2020, 31, 447–456, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Choi, J.; Eom, K.; Jeon, K.; Yoon, Y. Monitoring ground movements for deep seated landslide risk areas during an earthquake episode. Regul. Conf. Korean Soc. Civil Eng. 2019, 960–961, (In Korean with English Abstract). [Google Scholar]
- Park, J.; Seo, J.; Lee, C. Analysis of GIS for characteristics on the slow-moving landslide: With a special reference on slope and grade of landslide. J. Korean Soc. For. Sci. 2019, 108, 311–321, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Wang, S.; Li, D.Q.; Du, W. Recent advances in the investigation of slow-moving landslide in the Three Gorges Reservoir area, China. River 2022, 1, 91–103. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.; Jeong, H.; Shin, S. Environmental Statistics and Data Analysis; Hannarae Publishing, Co.: Seoul, Republic of Korea, 2018; pp. 158–173. (In Korean) [Google Scholar]
- Woo, S. PASW: Statistics 18.0; Human and Welfare: Seoul, Republic of Korea, 2010; p. 383. (In Korean) [Google Scholar]
- Yoo, N.; Park, B. A case study of landslides due to heavy rainfall. J. Ind. Technol. 2001, 21, 303–315, (In Korean with English Abstract). [Google Scholar]
- Korea Meteorological Administration. KMA Open MET Data Portal: ASOS (Automated Synoptic Observing System) Data, 2020. Available online: https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 (accessed on 13 September 2023). (In Korean).
- Jau, J.; Park, S.; Son, D.; Joo, S. The effects of geological and topographical features on landslide and land-creep. J. Korean Soc. For. Sci. 2000, 89, 323–334, (In Korean with English Abstract). [Google Scholar]
- National Geography Information Institute. The National Atlas of Korea II 2020: Characteristics of Forest Soil. Available online: http://nationalatlas.ngii.go.kr/pages/page_2305.php (accessed on 13 September 2023).
- National Geography Information Institute. The National Atlas of Korea II 2020: Soil Properties. Available online: http://nationalatlas.ngii.go.kr/pages/page_2303.php (accessed on 13 September 2023).
- Kim, Y.; Jung, S. A study on the rainfall-triggered landslides in Taijon-Chungnam area. KSCE J. Civil Environ. Eng. Res. 2000, 20, 341–355, (In Korean with English Abstract). [Google Scholar]
- Olivier, M.; Bell, F.G.; Jermy, C.A. The effect of rainfall on slope failure with examples from the Greater Durban area. In Proceedings of the 7th International Congress International Association of Engineering Geology, Lisboa, Portugal, 5–9 September 1994; pp. 1629–1636. [Google Scholar]
- Park, J.; Lee, C.; Kang, M.; Kim, K. Analysis of characteristics of forest environmental factors on land creeping occurrence. J. Agric. Life Sci. 2015, 55, 133–144, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Jeong, J.; Koo, K.; Lee, C.; Kim, C. Physico-chemical properties of Korean forest soils by regions. J. Korean Soc. For. Sci. 2002, 91, 694–700, (In Korean with English Abstract). [Google Scholar]
Site No. | Grade of Slow-Moving Landslide on the Landslide Hazard Map (m2) | Total (m2) | |||||
---|---|---|---|---|---|---|---|
Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Excluded Area | ||
1 | 1900 (6.4) | 13,500 (45.6) | 10,400 (35.1) | 3700 (12.5) | 100 (0.3) | - (-) | 29,600 (100.0) |
2 | 500 (0.8) | 1700 (2.6) | 1200 (1.9) | 1300 (2.0) | 200 (0.3) | 59,900 (92.4) | 64,800 (100.0) |
3 | - (-) | 14,300 (17.0) | 20,700 (24.7) | 12,900 (15.4) | 800 (1.0) | 35,200 (42.0) | 83,900 (100.0) |
4 | 310 (4.1) | 20,100 (26.9) | 25,500 (34.1) | 19,700 (26.4) | 6100 (8.2) | 200 (0.3) | 74,700 (100.0) |
5 | - (-) | 1400 (5.9) | 12,200 (51.0) | 4100 (17.2) | - (-) | 6200 (25.9) | 23,900 (100.0) |
6 | 100 (0.4) | 2600 (9.2) | 8600 (30.3) | 6300 (22.2) | - (-) | 10,800 (38.0) | 28,400 (100.0) |
7 | - (-) | 3800 (7.2) | 22,900 (43.6) | 5800 (11.0) | - (-) | 20,000 (38.1) | 52,500 (100.0) |
8 | 200 (0.2) | 2900 (3.2) | 3700 (4.1) | 23,600 (26.3) | 59,400 (66.1) | - (-) | 89,800 (100.0) |
9 | 3200 (25.2) | 3800 (29.9) | 2400 (18.9) | - (-) | - (-) | 3300 (26.0) | 12,700 (100.0) |
10 | 500 (6.8) | 600 (8.2) | 400 (5.5) | - (-) | - (-) | 5800 (79.5) | 7300 (100.0) |
11 | 4800 (9.3) | 14,800 (28.6) | 26,300 (5.9) | 2700 (5.2) | 300 (0.6) | 2800 (5.4) | 51,700 (100.0) |
12 | 4200 (15.3) | 10,200 (37.2) | 9700 (35.4) | 300 (1.1) | - (-) | 3000 (10.9) | 27,400 (100.0) |
13 | - (-) | 100 (0.3) | 4400 (11.2) | 8000 (20.3) | - (-) | 26,900 (68.3) | 39,400 (100.0) |
14 | - (-) | - (-) | 2500 (6.7) | 12,700 (34.0) | 6300 (16.9) | 15,800 (42.4) | 37,300 (100.0) |
15 | - (-) | 1600 (4.5) | 18,900 (53.5) | 13,900 (39.4) | 900 (2.5) | - (-) | 35,300 (100.0) |
Total (m2) | 18,500 (2.8) | 91,400 (13.9) | 169,800 (25.8) | 115,000 (17.5) | 74,100 (11.2) | 189,900 (28.8) | 658,700 (100.0) |
Grade | Mean (m2) | SD (m2) | Skewness | Kurtosis | Shapiro–Wilk | |
---|---|---|---|---|---|---|
Statistics | p | |||||
1 | 1233.3 | 1729.4 | 1.136 | −0.283 | 0.738 | 0.001 |
2 | 6093.3 | 6594.0 | 0.992 | −0.443 | 0.817 | 0.006 |
3 | 11,320.0 | 9264.5 | 0.466 | −1.343 | 0.891 | 0.070 |
4 | 7666.7 | 7373.7 | 0.926 | −0.020 | 0.893 | 0.074 |
5 | 4940.0 | 15,214.7 | 3.749 | 14.283 | 0.367 | <0.001 |
Ea z | 12,660.0 | 16,929.8 | 1.849 | 3.472 | 0.767 | 0.001 |
Grade | Area (m2) | p (Kruskal–Wallis) | Rank Data of Grade Area | ||||
---|---|---|---|---|---|---|---|
N | Mean y | SD | F | p | |||
1 | 18,500 | <0.001 | 15 | 27.333 a | 17.846 | 5.975 | <0.001 |
2 | 91,400 | 15 | 49.133 b | 21.516 | |||
3 | 169,800 | 15 | 62.167 b | 19.566 | |||
4 | 115,000 | 15 | 52.933 b | 23.658 | |||
5 | 74,100 | 15 | 27.867 a | 24.365 | |||
Ea z | 189,900 | 15 | 53.567 b | 29.197 | |||
Total | 658,700 | 90 | 45.500 | 26.000 |
Sn. | Ga. | Sg. | Cr. | Ir. | J. | Js. | Ss. | Wd. | Sod. | St. | A. | Sld. | Sa. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Unk | Okc | Mr | Ne | 2 | 6–20 | Ne | Wr | 60–90 | SL | 162.5 | 21.2 | N50W |
2 | Car | Pye | Sr | Ne | 2 | 6–20 | E | Sr | 30–60 | SL | 225.3 | 23.9 | N32W |
3 | Cre | Gye | Ir | Ne | ≥3 | 6–20 | E | Wr | <30 | SiCL | 161.3 | 25.1 | N30W |
4 | Cre | Bul | Ir | Ne | ≥3 | 6–20 | E | Nr | 30–60 | SiL | 122.5 | 30.0 | N35W |
5 | Cre | Gye | Sr | Ne | 2 | 6–20 | Ne | Wr | 30–60 | L | 68.8 | 22.6 | N30W |
6 | Cre | Gye | Sr | E | 2 | 6–20 | E | Wr | <30 | L | 60.0 | 23.8 | N23E |
7 | Ter | Yon | Sr | Ne | 2 | 20–60 | E | Wr | 30–60 | L | 117.5 | 22.9 | N25W |
8 | Per | Pye | Sr | Ne | ≥3 | 6–20 | Ne | Wr | <30 | SL | 587.5 | 35.0 | N50W |
9 | Pre | Sob | Mr | Ne | ≥3 | 6–20 | Ne | Wr | <30 | SL | 41.3 | 32.7 | N29W |
10 | Pre | Sob | Mr | Ne | ≥3 | 6–20 | Ne | Wr | <30 | SL | 33.8 | 29.5 | N28E |
11 | Pre | Yul | Mr | E | 2 | 20–60 | Ne | Wr | 30–60 | SL | 41.3 | 18.3 | N20W |
12 | Unk | Unk | Ir | Ne | 2 | 20–60 | Ne | Wr | 30–60 | L | 41.3 | 23.4 | N35W |
13 | Pre | Seo | Mr | Ne | 2 | 6–20 | Ne | Wr | 30–60 | L | 27.5 | 16.7 | N30W |
14 | Unk | Okc | Mr | Ne | ≥3 | 6–20 | Ne | Wr | 30–60 | SL | 111.3 | 17.6 | N30W |
15 | Cre | Gye | Sr | Ne | ≥3 | 6–20 | Ne | Wr | <30 | LS | 131.3 | 17.3 | N25E |
Site No. | SL.O. | Based on the Date of Occurrence of Slow-Moving Landslides | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wid. | Len. | Dep. | Rf. | C.Rf.D. | C.Rf. | Mx.H.Rf. | Rf.I. | A.Rf. | ||||
3 Days | 5 Days | 7 Days | 15 Days | |||||||||
1 | 446.9 | 298.0 | 4.6 | 165.5 | 3 | 113.0 | 48.5 | 59.5 | 125.5 | 132.5 | 133.0 | 133.0 |
2 | 166.0 | 252.1 | 1.6 | 1.5 | 3 | 42.5 | 1.5 | 48.0 | 0.3 | 0.3 | 0.8 | 3.8 |
3 | 299.9 | 365.6 | 5.8 | 153.5 | 5 | 162.6 | 30.5 | 41.1 | 162.5 | 162.5 | 162.5 | 163.9 |
4 | 346.2 | 271.6 | 1.2 | 18.5 | 2 | 20.5 | 12.5 | 41.1 | 48.5 | 48.5 | 48.5 | 49.0 |
5 | 119.8 | 174.6 | 2.5 | 35.0 | 6 | 70.6 | 23.1 | 42.1 | 2.4 | 25.5 | 51.6 | 79.9 |
6 | 220.6 | 143.0 | 1.3 | 99.8 | 21 | 611.7 | 38.8 | 43.0 | 11.6 | 59.5 | 59.6 | 334.2 |
7 | 155.3 | 108.2 | 1.7 | 141.0 | 8 | 59.0 | 25.5 | 29.2 | 42.0 | 42.0 | 74.0 | 117.4 |
8 | 322.9 | 467.2 | 4.5 | 0.0 | 4 | 31.0 | 48.5 | 47.4 | 49.5 | 166.0 | 173.0 | 258.5 |
9 | 84.2 | 131.5 | 2.8 | 42.5 | 6 | 128.9 | 22.5 | 29.5 | 108.4 | 110.5 | 110.5 | 224.6 |
10 | 87.0 | 109.3 | 1.7 | 42.5 | 6 | 128.9 | 22.5 | 29.5 | 108.4 | 110.5 | 110.5 | 224.6 |
11 | 77.8 | 133.6 | 2.3 | 42.5 | 6 | 128.9 | 22.5 | 29.5 | 108.4 | 110.5 | 110.5 | 224.6 |
12 | 141.5 | 203.1 | 2.5 | 42.5 | 6 | 128.9 | 22.5 | 29.5 | 108.4 | 110.5 | 110.5 | 224.6 |
13 | 179.0 | 108.9 | 1.5 | 2.0 | 3 | 1.2 | 1.8 | 39.5 | 0.0 | 0.0 | 0.0 | 1.0 |
14 | 113.8 | 125.7 | 1.6 | 65.0 | 14 | 392.5 | 16.5 | 43.5 | 1.5 | 1.5 | 1.5 | 8.5 |
15 | 117.2 | 156.1 | 1.2 | 7.5 | 4 | 29.5 | 6.5 | 32.2 | 0.0 | 3.0 | 4.5 | 25.5 |
Ave. | 191.9 | 203.2 | 2.5 | 57.3 | 6.5 | 136.6 | 22.9 | 39.0 | 58.5 | 72.2 | 76.7 | 138.2 |
Cls. | Len. | Dep. | Rf. | C.Rf.D. | C.Rf. | Mx.H.Rf. | Rf.I. | A.Rf. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
3 Days | 5 Days | 7 Days | 15 Days | ||||||||
Wid. | 0.625 * | 0.086 | −0.067 | 0.533 * | −0.312 | 0.355 | 0.590 * | 0.020 | 0.207 | 0.131 | −0.049 |
Len. | 0.401 | 0.274 | 0.517 * | −0.097 | 0.335 | 0.602 * | 0.306 | 0.524 | 0.440 | 0.180 | |
Dep. | 0.765 ** | 0.041 | 0.318 | 0.659 ** | 0.077 | 0.696 ** | 0.738 ** | 0.821 ** | 0.445 | ||
Rf. | 0.295 | 0.498 | 0.688 ** | −0.204 | 0.785 ** | 0.910 ** | 0.937 ** | 0.811 ** | |||
C.Rf.D. | 0.747 ** | 0.313 | −0.345 | 0.046 | −0.062 | 0.016 | 0.435 | ||||
C.Rf. | 0.400 | −0.035 | 0.554 * | 0.267 | 0.258 | 0.524 * | |||||
Mx.H.Rf. | 0.171 | 0.427 | 0.713 ** | 0.763 ** | 0.710 ** | ||||||
Rf.I. | −0.184 | −0.031 | −0.094 | −0.186 | |||||||
3 days | 0.864 ** | 0.847 ** | 0.463 | ||||||||
5 days | 0.978 ** | 0.748 ** | |||||||||
7 days | 0.726 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Lee, S.-H.; Kim, H. Assessment of Internal and External Factors Causing Slow-Moving Landslides. Appl. Sci. 2023, 13, 11444. https://doi.org/10.3390/app132011444
Park J-H, Lee S-H, Kim H. Assessment of Internal and External Factors Causing Slow-Moving Landslides. Applied Sciences. 2023; 13(20):11444. https://doi.org/10.3390/app132011444
Chicago/Turabian StylePark, Jae-Hyeon, Sang-Hyeon Lee, and Hyun Kim. 2023. "Assessment of Internal and External Factors Causing Slow-Moving Landslides" Applied Sciences 13, no. 20: 11444. https://doi.org/10.3390/app132011444
APA StylePark, J.-H., Lee, S.-H., & Kim, H. (2023). Assessment of Internal and External Factors Causing Slow-Moving Landslides. Applied Sciences, 13(20), 11444. https://doi.org/10.3390/app132011444