Experimental Analysis of a Spray Hydrocooler with Cold Energy Storage for Litchi
Abstract
:1. Introduction
2. Mathematical Model of the Hydrocooler
2.1. Mathematical Model of TES System
2.2. Thermal Resistance of Ice-on-Coil
2.3. Mathematical Model of Refrigeration System
2.4. Solution of Mathematical Model
3. Design and Fabrication of Hydrocooler
3.1. Overall Structure
3.2. Structure of TES System
3.3. Structure of Spray Hydrocooling System
4. Charging Test and Litchi Spray Precooling Tests
4.1. Experimental Setup
4.2. Charging Test
4.3. Litchi Spray Precooling Tests
4.4. Evaluation of Spray Hydrocooler Performance
5. Results and Discussion
5.1. Experiment I: Charging of TES Tank
5.1.1. Variation of Water Temperature and Ice Thickness
5.1.2. Variation of TES Capacity and EER
5.2. Experiment II: Litchi Spray Hydrocooling Performance
5.2.1. The Temperature of Litchi and Water
5.2.2. Precooling Capacity and Precooling Rate
5.2.3. Total Power Consumption and Average Power Consumption
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
Nomenclature | |
A | Area, m2 |
c | Specific heat, J kg−1 K−1 |
C | Latent heat, J kg−1 |
d | Diameter, m |
E | Energy consumption, J |
EER | Energy efficiency ratio |
Ekg | Average energy consumption of precooling 1 kg of litchi, kJ kg−1 |
Etal | Power consumption of charging and precooling, J |
h | Heat transfer coefficient, W m−2 K−1 |
l | Length, m |
m | Weight, kg |
n | Number of precooling batches of litchi |
N0 | Theoretical energy consumption, W |
P | Heat load, W |
P0 | Refrigerating capacity of refrigeration system, W |
q | Heat load per unit area, W m−2 |
q0 | Refrigeration capacity per unit mass, kJ kg−1 |
ql | Density of heat flow rate, W m−2 |
qm | Mass flow, kg s−1 |
qV | Refrigeration capacity per unit volume, kJ m−3 |
Q | Quantity of heat, J |
Qmax | The maximum TES capacity of TES tank, J |
Qchr | TES capacity of charging, J |
r | Radius, m |
R | Heat conduction resistance, m2 K W−1 |
t | Time, s or h |
T | Temperature, °C |
TES | Thermal energy storage, J |
u | Precooling rate, kg h−1 |
vin | Inspiratory specific volume, m3 kg−1 |
VR | Volume flow rate, m3 s−1 |
Vth | Theoretical gas transfer volume, m3 |
w0 | Unit theoretical work, kJ kg−1 |
ΔT | Temperature difference, °C |
Greek symbols | |
α | Power coefficient of water pump |
β | Volumetric efficiency of compressor |
λ | Thermal conductivity, W m−1 K−1 |
δ | Thickness, m |
ρ | Density, kg m−3 |
Subscripts | |
amb | Ambient |
chr | Charging |
cic | The contact surface between the ice and coil |
coi | Evaporation coil |
com | Comprehensive |
con | Condenser |
ctp | The end of charging to the end of precooling |
cwp | Circulating water pipe |
eff | Effective TES |
eli | Energy lost through insulation |
eva | Evaporator |
itw | Initial temperature of water |
itl | Initial temperature of litchi |
iw | Ice and water |
ilt | Insulation layer of TES tank |
ils | Insulation layer of spray precooling box |
ilc | Insulation layer of circulating water pipe |
isc | Inner surface of coil |
iic | Inner surface of insulation layer of circulating water pipe |
lit | Litchi |
load | Load of litchi precooling |
lod | Cooling loss rate caused by opening the door |
oic | Outer surface of insulation layer of circulating water pipe |
osc | Outer surface of coil |
osi | Outer surface of ice |
otp | Operation of water pump |
siw | Contact surface between insulation layer and water |
spr | Spray precooling |
spb | Spray precooling box |
src | Contact surface between refrigerant and coil |
spa | Contact surface between spray precooling box and air |
sta | Contact surface between TES tank and air |
tal | Total |
thb | Thermal bridge |
tst | TES tank |
ttl | Termination temperature of litchi precooling |
ttw | Termination precooling temperature of water |
wat | Water |
wpp | Water pump power |
wpw | Water pump works on water |
References
- Li, H.; Huang, D.; Ma, Q.; Qi, W.; Li, H. Factors influencing the technology adoption behaviours of litchi farmers in China. Sustainability 2020, 12, 271. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Wang, G.B.; Fawole, O.A.; Verboven, P.; Zhang, X.R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K. Postharvest precooling of fruit and vegetables: A review. Trends Food Sci. Technol. 2020, 100, 278–291. [Google Scholar] [CrossRef]
- Bai, X.Y.; Yang, Z.M.; Shen, W.J.; Shao, Y.Z.; Zeng, J.K.; Li, W. Polyphenol treatment delays the browning of litchi pericarps and promotes the total antioxidant capacity of litchi fruit. Sci. Hortic. 2022, 291, 110563. [Google Scholar] [CrossRef]
- Kumari, P.; Barman, K.; Patel, V.B.; Siddiqui, M.W.; Kole, B. Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Sci. Hortic. 2015, 197, 555–563. [Google Scholar] [CrossRef]
- Makule, E.; Dimoso, N.; Tassou, S.A. Precooling and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa—A Review. Horticulturae 2022, 8, 776. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X. Evaluation and optimization of air-based precooling for higher postharvest quality: Literature review and interdisciplinary perspective. Food Qual. Saf. 2020, 4, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, S.; Tian, C.; Yan, G.; Wang, D. An overview of current status of cold chain in China. Int. J. Refrig. 2018, 88, 483–495. [Google Scholar] [CrossRef]
- de Oliveira Alves Sena, E.; da Silva, P.S.O.; de Araujo, H.G.S.; de Aragão Batista, M.C.; Matos, P.N.; Sargent, S.A.; de Oliveira Junior, L.F.G.; Carnelossi, M.A.G. Postharvest quality of cashew apple after hydrocooling and coold room. Postharvest Biol. Technol. 2019, 155, 65–71. [Google Scholar] [CrossRef]
- Ilknur, A.; Nezihe, K. Forced-air, vacuum, and hydro precooling of cauliflower (Brassica oleracea L. var. botrytis cv. Freemont): Part II. Determination of quality parameters during storage. Food Sci. Technol. 2015, 35, 45–50. [Google Scholar]
- O’Sullivan, J.L.; Ferrua, M.J.; Love, R.; Verboven, P.; Nicolaï, B.; East, A. Forced-air cooling of polylined horticultural produce: Optimal cooling conditions and package design. Postharvest Biol. Technol. 2017, 126, 67–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Mei, J.; Xie, J. Effects of Different Postharvest Precooling Treatments on Cold-Storage Quality of Yellow Peach (Amygdalus persica). Plants 2022, 11, 2334. [Google Scholar] [CrossRef]
- Zare, M.; Dehghan, H.; Yazdanirad, S.; Khoshakhlagh, A.H. Comparison of the Impact of an Optimized Ice Cooling Vest and a Paraffin Cooling Vest on Physiological and Perceptual Strain. Saf. Health Work 2019, 10, 219–223. [Google Scholar] [CrossRef]
- Yin, J.; Guo, M.; Liu, G.; Ma, Y.; Chen, S.; Jia, L.; Liu, M. Research Progress in Simultaneous Heat and Mass Transfer of Fruits and Vegetables During Precooling. Food Eng. Rev. 2022, 14, 307–327. [Google Scholar] [CrossRef]
- Zhu, Z.; Geng, Y.; Sun, D.W. Effects of Pressure Reduction Modes on Vacuum Cooling Efficiency and Quality Related Attributes of Different Parts of Pakchoi (Brassica Chinensis L.). Postharvest Biol. Technol. 2021, 173, 111409. [Google Scholar] [CrossRef]
- Aroucha, E.M.M.; Araujo, J.M.M.D.; Nunes, G.H.D.S.; Negreiros, M.Z.D.; Paiva, C.A.D.; Souza, M.S.D. Cantaloupe melon (Cucumis melo L.) conservation using hydrocooling. Rev. Ceres 2016, 63, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Garrido, Y.; Tudela, J.A.; María, I.G. Comparison of industrial precooling systems for minimally processed baby spinach. Postharvest Biol. Technol. 2015, 102, 1–8. [Google Scholar] [CrossRef]
- Liang, Y.S.; Wongmetha, O.; Wu, P.S.; Ke, L.S. Influence of hydrocooling on browning and quality of litchi cultivar Feizixiao during storage. Int. J. Refrig. 2013, 36, 1173–1179. [Google Scholar] [CrossRef]
- Zainal, B.; Ding, P.; Ismail, I.S.; Saari, N. Physico-chemical and microstructural characteristics during postharvest storage of hydrocooled rockmelon (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biol. Technol. 2019, 152, 89–99. [Google Scholar] [CrossRef]
- Zainal, B.; Ding, P.; Ismail, I.S.; Saari, N. H NMR metabolomics profiling unveils the compositional changes of hydro-cooled rockmelon (Cucumis melo L. reticulatus cv glamour) during storage related to in vitro antioxidant activity. Sci. Hortic. 2019, 246, 618–633. [Google Scholar] [CrossRef]
- Tao, Z. Difficulties and countermeasures of the circulation of litchi in Guangxi. Manag. Technol. Small Medium Sized Enterp. 2017, 11, 45–46. [Google Scholar]
- Yang, C.; Lee, F.W.; Cheng, Y.J.; Chu, Y.Y.; Chen, C.N.; Kuan, Y.C. Chitosan coating formulated with citric acid and pomelo extract retards pericarp browning and fungal decay to extend shelf life of cold-stored lychee. Sci. Hortic. 2023, 310, 111735. [Google Scholar] [CrossRef]
- Gan, L.; Chen, M.; Lv, E. Effect of different precooling methods on litchi precooling. Mod. Agric. Equip. 2020, 41, 8–13. [Google Scholar]
- Alva, G.; Lin, Y.X.; Fang, G.Y. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- McKenna, P.; Turner, W.J.N.; Finn, D.P. Thermal energy storage using phase change material: Analysis of partial tank charging and discharging on system performance in a building cooling application. Appl. Therm. Eng. 2021, 198, 117437. [Google Scholar] [CrossRef]
- Li, X.; Wu, W.; Li, K.; Ren, X.; Wang, Z. Experimental study on a wet precooling system for fruit and vegetables with ice slurry. Int. J. Refrig. 2022, 133, 9–18. [Google Scholar] [CrossRef]
- Lin, H.M.; Deng, S.G.; Huang, S.B.; Guo, H. Effects of Precooling with Slurry Ice on the Quality and Microstructure of Anglerfish (Lophius americanus) Liver. J. Food Process Eng. 2016, 39, 3–10. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Z.; Ding, F.; Hua, L.; Fang, Y.; Han, Z.; Shi, J.; Zou, X.; Xiao, J. Improvements in chitosan-based slurry ice production and its application in precooling and storage of Pampus argenteus. Food Chem. 2022, 393. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Sun, S.; Li, H.; Jiao, L. Refrigerating characteristics of ice storage capsule for temperature control of coal mine refuge chamber. Appl. Therm. Eng. 2015, 75, 756–762. [Google Scholar] [CrossRef]
- Biosca-Taronger, J.; Payá, J.; López-Navarro, A.; Corberán, J.M. Ice formation modelling around the coils of an ice storage tank. In Proceedings of the 6th European Thermal Sciences Conference, Poitiers, France, 4–7 September 2012; Institute of Physics Publishing: Bristol, UK, 2012; Volume 395. [Google Scholar]
- Liu, R. Experiment Research and Numerical Simulation of Heat Pipe Ice Storage; East China Jiaotong University: Nanchang, China, 2011. [Google Scholar]
- Ye, S.; Chen, G.; Chen, L.; Xing, J. Influence of freezing thickness on heat transfer resistance of ice-on-coil, iceball and metal-cored iceball. Cryogenics 2001, 6, 62–65. [Google Scholar]
- Li, P. Study on the Heat Transfer Characteristics of the Refrigeration Fluoroethane (HFC-161) Flow Boiling Inside Tubes; Zhejiang University: Hangzhou, China, 2013. [Google Scholar]
- Wu, S.M.; Fang, G.Y.; Chen, Z. Discharging characteristics modeling of cool thermal energy storage system with coil pipes using n-tetradecane as phase change material. Appl. Therm. Eng. 2012, 37, 336–343. [Google Scholar] [CrossRef]
- Jin, W.; Lu, H. Refrigeration Technology; Mechanical Industry Press: Beijing, China, 2009. [Google Scholar]
- Wang, H. Estimation of Thermal Properties of Lychee. J. Shenzhen Polytech. 2006, 3, 23–26. [Google Scholar]
- Yang, S.M.; Tao, W.Q. Heat Transfer, 4th ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Mehmet, A.E.; Aytunç, E. Ibrahimdincer. Energy and exergy analyses of an ice-on-coil thermal energy storage system. Energy 2011, 36, 6375–6386. [Google Scholar]
- Ogawa, N.; Kaneko, F. Experiment and mathematical model for the heat transfer in water around 4 °C. Eur. J. Phys. 2017, 38, 025102. [Google Scholar] [CrossRef]
Parameters | Property | Values |
---|---|---|
Acwp | Area of contact surface between circulating water pipe and air | 1.1 m2 (Calculated) |
Aspb | Area of contact surface between spray precooling box and air | 4 m2 (Assumed) |
Atst | Area of contact surface between thermal storage tank and air | 10 m2 (Assumed) |
clit | Specific heat of litchi | 3.704 × 103 J kg−1 K−1 [35] |
cwat | Specific heat of water | 4.2 × 103 J kg−1 K−1 [36] |
Cice | Latent heat of water freezing | 3.35 × 105 J kg−1 [36] |
hcic hisc | Thermal conductivity coefficient between the ice and coil Boiling coefficient of heat transfer on the refrigerant in the coil | 2300 W m−2 K−1 [36] 4000 W m−2 K−1 [36] |
hosi | Convective heat transfer coefficient between ice and water | 400 W m−2 K−1 [36] |
hsiw | Convection heat transfer coefficient of water and thermal storage tank | 100 W m−2 K−1 [36] |
hspa | Convection heat transfer coefficient of spray precooling box and air | 20 W m−2 K−1 (Measured) |
hsta | Convection heat transfer coefficient of thermal storage tank and air | 6 W m−2 K−1 (Measured) |
mlit | The mass of litchi precooling | 1000 kg (Assumed) |
mwat | The mass of water in thermal storage tank | 1200 kg (Assumed) |
Plod | Cooling loss rate caused by opening the door | 300 W (Assumed) |
Pthb | Power of heat bridge heat transfer | 200 W (Assumed) |
Pwpp | Water pump power in precooling | 280 W (Calculated) |
qcon | Heat load per unit area of the condenser | 260 W m−2 [34] |
qeva | Heat load per unit area of the evaporator | 3500 W m−2 [34] |
rcoi | Radius of evaporation coil | 0.008 m (Assumed) |
riic | Radius of circulating water pipe | 0.032 m (Assumed) |
risc | Inner radius of evaporation coil | 0.007 m (Follow determination) |
roic | Radius of circulating water pipe insulation layer | 0.072 m (Follow determination) |
tchr | Charging time of thermal storage | 12 h (Assumed) |
tctp | Time from the end of charging to the end of precooling | 12 h (Assumed) |
totp | Operation time of water pump | 8 h (Assumed) |
Tamb | The ambient temperature | 30 °C (Measured) |
Tilt | The initial temperature of litchi precooling | 29 °C (Measured) |
Titw | The initial temperature of water | 31 °C (Measured) |
Tosi | Outer surface temperature of ice | 0 °C (Assumed) |
Tttl | The termination temperature of litchi precooling | 8 °C (Assumed) |
Tttw | The termination precooling temperature of water | 7 °C (Assumed) |
Twat | The water temperature of thermal storage tank | 15 °C charging (Assumed) 3 °C after charging (Assumed) |
α | The power coefficient of water pump | 0.57 (Measured) |
δils | Insulation layer thickness of spray hydrocooling box | 0.01 m (Assumed) |
δilt | Insulation layer thickness of thermal storage tank | 0.05 m (Assumed) |
λcoi | Coil’s thermal conductivity | 377 W m−1 K−1 [36] |
λice | Ice layer’s thermal conductivity | 2.22 W m−1 K−1 [36] |
λilc | Insulation layer’s thermal conductivity | 0.038 W m−1 K−1 [36] |
λils | Insulation layer’s thermal conductivity | 0.038 W m−1 K−1 [36] |
λilt | Insulation layer’s thermal conductivity | 0.038 W m−1 K−1 [36] |
ρice | Density of ice | 920 kg m−³ [36] |
Parameters | Property | Values | The Reference Equations |
---|---|---|---|
Qlit | Thermal energy absorbed by litchi precooling | 8.1 × 107 J | Equation (1) |
Qchr | TES capacity of charging | 2.4 × 108 J | Equations (2)–(7) |
mice | Ice storage capacity of charging | 256 kg | Equation (8) |
δice | Thickness of icicle | 0.04 m | Figure 3 and Equations (10)–(14) |
lcoi | Length of evaporation coil | 39.6 m | Equation (9) |
P0 | Refrigerating capacity of compressor | 5900 W | Equations (15)–(17) |
Acon | Heat transfer area of condenser | 22.6 m2 | Equation (18) |
Aeva | Heat transfer area of evaporator | 2 m2 | Equations (19) and (20) |
Component | Size or Model | Material or Company | Values |
---|---|---|---|
Compressor | QXL-30E | Zhejiang Boyang, China | 3180 W (−10 °C) |
Condenser | Small 3-HP | SIMCO | 18 m2 × 2 |
Evaporation coil | 0.016 m diameter | Copper | 43.4 m |
Circulating water pipe | 0.032 m diameter | PVC | 5 m |
Thermal energy storage tank | 1.7 × 0.85 × 1 m3 | Stainless steel | 1.4 m3 |
Spray precooling box | 0.75 × 0.52 × 0.45 m3 | Acrylic | 0.18 m3 |
Nozzle | 0.0015 m diameter | Silica gel | Variable size |
Sprinkle | 0.25 × 0.25 × 0.006 m3 | Stainless steel | 3–10 L min−1 × 6 |
Precooling basket | 0.35 × 0.48 × 0.16 m3 | Plastic | 200 g |
Water pump | SD-750 | Weller | Frequency conversion |
Test | Charging Time (h) | Litchi Load (kg) | Spray Flow Rate (L min−1) | Water Storage Capacity of TES Tank (kg) |
---|---|---|---|---|
1 | 12 | -- | -- | 1200 |
2 | 4 | 23 | 30 | 400 |
3 | 3 | 23 | 30 | 400 |
4 | 5 | 23 | 30 | 400 |
5 | 6 | 23 | 30 | 400 |
6 | 5 | 8 | 30 | 400 |
7 | 5 | 13 | 30 | 400 |
8 | 5 | 18 | 30 | 400 |
9 | 5 | 28 | 30 | 400 |
10 | 5 | 23 | 20 | 400 |
11 | 5 | 23 | 40 | 400 |
12 | 5 | 23 | 50 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Lv, E.; Lu, H.; Guo, J. Experimental Analysis of a Spray Hydrocooler with Cold Energy Storage for Litchi. Appl. Sci. 2023, 13, 8195. https://doi.org/10.3390/app13148195
Huang H, Lv E, Lu H, Guo J. Experimental Analysis of a Spray Hydrocooler with Cold Energy Storage for Litchi. Applied Sciences. 2023; 13(14):8195. https://doi.org/10.3390/app13148195
Chicago/Turabian StyleHuang, Hao, Enli Lv, Huazhong Lu, and Jiaming Guo. 2023. "Experimental Analysis of a Spray Hydrocooler with Cold Energy Storage for Litchi" Applied Sciences 13, no. 14: 8195. https://doi.org/10.3390/app13148195