Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Cheese-Making Process
2.2. Irradiation Treatment
2.3. Cheese Compositional Analysis
2.4. Texture and Colour Analysis
2.5. Smart Nose Analysis
2.6. Extraction and Detection of Odour Active Compounds
2.7. Microbiological Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Compositional Properties
3.2. Colour and Texture Properties
3.3. Smart Nose
3.4. Microbiological Quality
3.5. Costs Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.E. A 100-Year Review: Cheese Production and Quality. J. Dairy Sci. 2017, 100, 9952–9965. [Google Scholar] [CrossRef] [PubMed]
- Nyamakwere, F.; Esposito, G.; Dzama, K.; Muller, M.; Moelich, E.I.; Raffrenato, E. A Survey of Cheese from Small-Scale Artisanal Producers in Western Cape, South Africa. J. Food Qual. 2021, 2021, 3708786. [Google Scholar] [CrossRef]
- Ha, J.W.; Back, K.H.; Kim, Y.H.; Kang, D.H. Efficacy of UV-C Irradiation for Inactivation of Food-Borne Pathogens on Sliced Cheese Packaged with Different Types and Thicknesses of Plastic Films. Food Microbiol. 2016, 57, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.B. Food Irradiation: Standards, Regulations and World-Wide Trade. Radiat. Phys. Chem. 2016, 129, 30–34. [Google Scholar] [CrossRef]
- Park, J.S.; Ha, J.W. X-ray Irradiation Inactivation of Escherichia Coli, Salmonella Enterica Serovar. Thypimurium and Listeria Monocytogenes on Sliced Cheese and Its Bactericidal Mechanisms. Int. J. Food Microbiol. 2019, 289, 127–133. [Google Scholar]
- Odueke, O.B.; Farag, K.W.; Baines, R.N.; Chadd, S.A. Irradiation Applications in Dairy Products: A Review. Food Bioprocess Technol. 2016, 9, 751–767. [Google Scholar] [CrossRef]
- Kilcast, D. Food Irradiation: Current Problems and Future Potential. Int. Biodeter. Biodegr. 1995, 36, 279–296. [Google Scholar] [CrossRef]
- Roberts, P.B. Food Irradiation Is Safe: Half a Century of Studies. Radiat. Phys. Chem. 2014, 105, 78–82. [Google Scholar] [CrossRef]
- Li, C.; He, L.; Jin, G.; Ma, S.; Wu, W.; Gai, L. Effect of Different Irradiation Dose Treatment on the Lipid Oxidation, Instrumental Color and Volatiles of Fresh Pork and Their Changes during Storage. Meat Sci. 2017, 128, 68–76. [Google Scholar] [CrossRef]
- Lalaguna, F. Physicochemical Response of Palmita-Type Cheese to Low-Dose Irradiation. J. Food Sci. 2003, 68, 26–30. [Google Scholar] [CrossRef]
- Aly, S.A.; Farag, D.E.; Galal, E. Effect of Gamma Irradiation on the Quality and Safety of Egyptian Karish Cheese. J. Anim. Sci. 2012, 8, 761–766. [Google Scholar]
- Shalaby, A.R.; Anwar, M.M.; Sallam, E.M.; Emam, W.H. Quality and Safety of Irradiated Food Regarding Biogenic Amines: Ras Cheese. Int. J. Food Sci. Technol. 2016, 51, 1048–1054. [Google Scholar] [CrossRef]
- Pietranera, M.S.A.; Narvaiz, P.; Horak, C.; Kairiyama, E. Irradiated Ice Creams for Immunosuppressed Patients. Radiat. Phy. Chem. 2003, 66, 357–365. [Google Scholar] [CrossRef]
- Odueke, O.B.; Chadd, S.A.; Baines, R.N.; Farag, K.W.; Jansson, J. Effects of Gamma Irradiation on the Shelf-Life of a Dairy-Like Product. Radiat. Phys. Chem. 2018, 143, 63–71. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Nabulsi, A.A.; Osaili, T.M.; Al-Holy, M.; Ghoush, M.A.; Alkhalidy, H.; Jaradat, Z.W.; Ayyash, M.; Holley, R.A. Inactivation of Stressed Salmonella Enterica, Escherichia Coli O157:H7, and Listeria Monocytogenes in Hummus Using Low Dose Gamma Irradiation. J. Food. Sci. 2022, 87, 845–855. [Google Scholar] [CrossRef]
- Branciari, R.; Mughetti, L.; Ranucci, D.; Miraglia, D.; Valiani, A.; Acuti, G.; Selvaggini, R.; Trabalza-Marinucci, M. Influence of Manufacturing Procedure on the Compositional and Sensory Properties of n-3 Fatty Acid-Enriched Pecorino Cheese. J. Dairy Res. 2014, 81, 455–461. [Google Scholar] [CrossRef]
- Seisa, D.; Osthoff, G.; Hugo, C.; Hugo, A.; Bothma, C.; Van Der Merwe, J. The Effect of Low-Dose Gamma Irradiation and Temperature on the Microbiological and Chemical Changes during Ripening of Cheddar Cheese. Radiat. Phys. Chem. 2004, 69, 419–431. [Google Scholar] [CrossRef]
- Konteles, S.; Sinanoglou, V.J.; Batrinou, A.; Sflomos, K. Effects of γ-Irradiation on Listeria Monocytogenes Population, Colour, Texture and Sensory Properties of Feta Cheese during Cold Storage. Food Microbiol. 2009, 26, 157–165. [Google Scholar] [CrossRef]
- Wehr, H.M.; Frank, J.F. Standard Methods for the Examination of Dairy Products, 17th ed.; American Public Health Association: Washington, DC, USA, 2004; pp. 80–85. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Taivosalo, A.; Kriščiunaite, T.; Seiman, A.; Part, N.; Stulova, I.; Vilu, R. Comprehensive Analysis of Proteolysis during 8 Months of Ripening of High-Cooked Old Saare Cheese. J. Dairy Sci. 2018, 101, 944–967. [Google Scholar] [CrossRef]
- Neocleous, M.; Barbano, D.M.; Rudan, M.A. Impact of Low Concentration Factor Microfiltration on the Composition and Aging of Cheddar Cheese. J. Dairy Sci. 2010, 85, 2425–2437. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.S.; Jhala, R.P.; Muthukumarappan, K.; Acharya, M.R.; Mistry, V.V. Textural and Rheological Properties of Processed Cheese. Int. J. Food Prop. 2004, 7, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Liu, Z.; Mo, B. Texture Profile Analysis of Sliced Cheese in relation to Chemical Composition and Storage Temperature. J. Chem. 2016, 2016, 8690380. [Google Scholar] [CrossRef] [Green Version]
- Rapisarda, T.; Pasta, C.; Belvedere, G.; Schadt, I.; La Terra, F.; Licitra, G.; Carpino, S. Variability of Volatile Profiles in Milk from the PDO Ragusano Cheese Production Zone. Dairy Sci. Technol. 2013, 93, 117–134. [Google Scholar] [CrossRef]
- Rapisarda, T.; Mereu, A.; Cannas, A.; Belvedere, G.; Licitra, G.; Carpino, S. Volatile Organic Compounds and Palatability of Concentrates Fed to Lambs and Ewes. Small Rumin. Res. 2012, 103, 120–132. [Google Scholar] [CrossRef]
- Arn, H.; Acree, T.E. Flavornet: A database of aroma compounds based on odor potency in natural products. In Food Flavors: Formation, Analysis and Packaging Influences; Elsevier Applied Science: New York, NY, USA, 1998; Volume 40, p. 27. Available online: http://www.nysaes.cornell.edu/flavornet/index.html (accessed on 4 October 2020).
- AOAC. Bacterial and E. coli/coliform counts in dairy products (petrifilm), method no. 986.33 and 989.10. In Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2014; Available online: https://www.3m.com/3M/en_US/p/d/fsd_colifor/ (accessed on 20 November 2018).
- Omer, M.; Elshirbiny, S. Composition and Microstructure of Cheese as Affected by Irradiation. Egypt J. Dairy Sci. 2005, 13, 33–39. [Google Scholar]
- Olson, D.G. Irradiation of Food. Food Technol. 1998, 52, 56–62. [Google Scholar]
- Dionísio, A.P.; Gomes, R.T.; Oetterer, M. Ionizing Radiation Effects on Food Vitamins—A Review. Braz Arch. Biol. Technol. 2009, 52, 1267–1278. [Google Scholar] [CrossRef]
- Ham, J.S.; Jeong, S.G.; Lee, S.G.; Han, G.S.; Chae, H.S.; Yoo, Y.M.; Kim, D.H.; Lee, W.K.; Jo, C. Irradiation Effect on α- and β-Caseins of Milk and Queso Blanco Cheese Determined by Capillary Electrophoresis. Radiat. Phys. Chem. 2009, 78, 158–163. [Google Scholar] [CrossRef]
- Ekezie, F.G.C.; Cheng, J.H.; Sun, D.W. Effects of Non-Thermal Food Processing Technologies on Food Allergens: A Review of Recent Research Advances. Trends Food Sci. Technol. 2018, 74, 12–25. [Google Scholar] [CrossRef]
- Kim, H.J.; Ham, J.S.; Lee, J.W.; Kim, K.; Do Ha, S.; Jo, C. Effects of Gamma and Electron Beam Irradiation on the Survival of Pathogens Inoculated into Sliced and Pizza Cheeses. Radiat. Phys. Chem. 2010, 79, 731–734. [Google Scholar] [CrossRef]
- Kortei, N.K.; Akonor, P.T. Correlation between Hue-Angle and Colour Lightness of Gamma Irradiated Mushrooms. Food Sci. Technol. 2015, 16, 98–103. [Google Scholar]
- Velasco, R.; Ordóñez, J.A.; Cabeza, M.C.; de la Hoz, L.; Cambero, M.I. Use of the E-Beam Radiation to Diminish the Late Blowing of Cheese. Int. Dairy J. 2011, 21, 493–500. [Google Scholar] [CrossRef]
- Černíková, M.; Nebesářová, J.; Salek, R.N.; Řiháčková, L.; Buňka, F. Microstructure and Textural and Viscoelastic Properties of Model Processed Cheese with Different Dry Matter and Fat in Dry Matter Content. J. Dairy Sci. 2017, 100, 4300–4307. [Google Scholar] [CrossRef] [Green Version]
- Fohely, F.; Suardi, N. Study the Characterisation of Spectral Absorbance on Irradiated Milk Protein. J. Phys. Conf. Ser. 2018, 995, 102056. [Google Scholar] [CrossRef] [Green Version]
- Adda, J. Flavour of dairy products. In Developments in Food Flavours; Birch, G.G., Lindley, M.G., Eds.; Elsevier Applied Science Publishers: New York, NY, USA, 1986; pp. 151–172. [Google Scholar]
- van Straten, S.; Maarse, H. Volatile Compounds in Food. In Qualitative Data, 5th ed.; Krips Repro: Meppel, The Netherlands, 1983; pp. 31–34. [Google Scholar]
- Mariaca, R.; Imhof, M.; Bosset, J.O. Occurrence of Volatile Chiral Compounds in Dairy Products, Especially Cheese—A Review. Eur. Food Res. Technol. 2001, 36, 212–253. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Toxic Phytochemicals and Their Potential Risks for Human Cancer. Cancer Prev. Res. 2014, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Innes, J.R.; Ulland, B.M.; Valerio, M.G.; Petrucelli, L.; Fishbein, L.; Hart, E.R.; Pallotta, A.J.; Bates, R.R.; Falk, H.L.; Gart, J.J. Bioassay of Pesticides and Industrial Chemicals for Tumorigenicity in Mice: A Preliminary Note. J. Natl. Cancer Inst. 1969, 42, 1101–1114. [Google Scholar]
- Swanson, A.B.; Chambliss, D.D.; Blomquist, J.C.; Miller, E.C.; Miller, J.A. The Mutagenicities of Safrole, Estragole, Eugenol, Trans-Anethole, and Some of Their Known or Possible Metabolites for Salmonella Typhimurium Mutants. Mutat. Res. Mol. Mech. Mutagen. 1979, 60, 143–153. [Google Scholar] [CrossRef]
- Munerato, M.C.; Sinigaglia, M.; Reguly, M.L.; de Andrade, H.H.R. Genotoxic Effects of Eugenol, Isoeugenol and Safrole in the Wing Spot Test of Drosophila Melanogaster. Mutat. Res. Toxicol. Environ. Mutagen. 2005, 582, 87–94. [Google Scholar] [CrossRef]
- Huo, J.X.; Bai, C.Y.; Guo, L.H.; Zhao, Z. Effect of Electron Beam Irradiation on the Shelf Life of Mozzarella Cheese. Int. J. Dairy Technol. 2013, 66, 352–358. [Google Scholar] [CrossRef]
- Nawar, W.W. Chemistry of thermal oxidation. In Flavor Chemistry of Fats and Oils; Min, D.B., Smouse, T.H., Eds.; Champaign, American Oil Chemists Society: Urbana, IL, USA, 1985; pp. 39–60. [Google Scholar]
- Kochhar, S.P. Oxidative pathways to the formation of off-flavours. In Food Taints and Off-Flavours; Saxby, M.J., Ed.; Springer: New York, NY, USA, 1996; pp. 168–225. [Google Scholar]
- European Commission. Commission Regulation (EC) no. 2073/2005 of 15 November 2005 on Microbial Criteria for Foodstuffs; L338; European Commission: Brussels, Belgium, 2005; pp. 1–26. [Google Scholar]
- Wang, X.B.; Wang, C.N.; Zhang, Y.C.; Liu, T.T.; Shen, X.; Guo, M.R. Effects of Gamma Radiation on Microbial, Physicochemical, and Structural Properties of Whey Protein Model System. J. Dairy Sci. 2018, 101, 4879–4890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommers, C.H.; Boyd, G. Elimination of Listeria Monocytogenes from Ready-to-Eat Turkey and Cheese Tortilla Wraps Using Ionizing Radiation. J. Food Prot. 2005, 68, 164–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyamakwere, F.; Esposito, G.; Dzama, K.; Raffrenato, E. A Review of Artisanal Cheese Making: An African Perspective. S. Afr. J. Anim. Sci. 2021, 51, 296–309. [Google Scholar] [CrossRef]
Parameter | Dosage | p-Value | |
---|---|---|---|
0.0 kGy | 5.0 kGy | ||
Moisture% | 30.3 ± 1.14 | 28.6 ± 1.16 | 0.0091 |
Ash % | 3.75 ± 0.46 | 3.78 ± 0.46 | 0.7350 |
pH | 5.16 ± 0.06 | 5.11 ± 0.06 | 0.0287 |
Lactic acid% | 0.86 ± 0.11 | 0.87 ± 0.12 | 0.8485 |
Protein% of TN c | 30.4 ± 1.77 | 29.6 ± 1.78 | 0.0084 |
TN % | 4.76 ± 0.28 | 4.63 ± 0.28 | 0.0082 |
Fat% | 32.0 ± 1.20 | 30.7 ± 1.23 | 0.0580 |
Fat in dry matter% | 45.9 ± 2.09 | 43.0 ± 2.11 | 0.0007 |
Water activity | 0.93 ± 0.01 | 0.92 ± 0.001 | 0.0001 |
Salt% | 2.69 ± 0.52 | 1.95 ± 0.53 | 0.0001 |
Salt in moisture% | 9.19 ± 2.27 | 7.18 ± 2.28 | 0.0001 |
Milk proteins | |||
α-lactalbumin% | 11.5 ± 1.78 | 11.2 ± 1.80 | 0.6219 |
β-lactoglobulin% | 14.2 ± 1.4 2 | 12.4 ± 1.36 | 0.1212 |
α-casein% | 25.2 ± 3.79 | 22.5 ± 3.86 | 0.1824 |
β-casein% | 3.81 ± 0.71 | 0.83 ± 0.63 | 0.0024 |
k-casein% | 11.3 ± 1.37 | 9.48 ± 1.44 | 0.1432 |
Property | Treatment | p-Values | |||||
---|---|---|---|---|---|---|---|
Dosage (D) | Weight (W) | ||||||
0.0 kGy | 5.0 kGy | 250 g | 500 g | D | W | D × W | |
c L* | 75.7 ± 2.50 | 73.1 ± 2.49 | 74.2 ± 2.49 | 74.6 ± 2.49 | 0.0005 | 0.6042 | 0.6042 |
da* | 4.36 ± 0.72 | 1.42 ± 0.72 | 2.84 ± 0.72 | 2.94 ± 0.72 | 0.0001 | 0.5587 | 0.5587 |
eb* | 23.8 ± 3.03 | 21.7 ± 3.03 | 22.8 ± 3.03 | 22.8 ± 3.03 | 0.0001 | 0.9860 | 0.9860 |
Chroma | 79.9 ± 1.24 | 87.0 ± 1.26 | 83.7 ± 1.25 | 83.2 ± 1.24 | 0.0001 | 0.3487 | 0.3487 |
Hue angle (°) | 24.3 ± 3.06 | 21.8 ± 3.06 | 23.0 ± 3.06 | 23.0 ± 3.06 | 0.0001 | 0.9997 | 0.9997 |
Property | Treatment | p-Values | |||||
---|---|---|---|---|---|---|---|
Dosage (D) | Weight (W) | ||||||
0.0 kGy | 5.0 kGy | 250 g | 500 g | D | W | D × W | |
Hardness (N) | 182.9 ± 70.31 | 209.0 ± 70.44 | 234.4 ± 71.04 | 183.6 ± 70.92 | 0.0294 | 0.0049 | 0.0332 |
Cohesiveness | 1.26 ± 0.11 | 0.44 ± 0.11 | 0.44 ± 0.14 | 0.43 ± 0.13 | 0.0001 | 0.9852 | 0.9889 |
Chewiness (J) | 1132.9 ± 316.24 | 448.2 ± 319.67 | 495.1 ± 334.76 | 401.2 ± 331.96 | 0.0001 | 0.7114 | 0.7114 |
Springiness (%) | 53.8 ± 1.87 | 42.3 ± 1.92 | 45.0 ± 2.11 | 39.6 ± 2.07 | 0.0001 | 0.0018 | 0.0018 |
Compounds | Chemical Class | Odour Perception | LRI a | Ident b | 278 | 369 | ||||
---|---|---|---|---|---|---|---|---|---|---|
b c | a1 d | a2 e | b | a1 | a2 | |||||
Methylbutyric acid | Acid | Cheese, Butyric | 367 | PI | X | X | ||||
Total acid | 1 | 0 | 0 | 0 | 0 | 1 | ||||
Nonanal | Aldehyde | Green | 1103 | PI | X | |||||
2-Nonenal | Aldehyde | Green | 1143 | PI | X | |||||
2,6-Nonadienal | Aldehyde | Hay | 1149 | PI | X | |||||
Total aldehyde | 2 | 0 | 0 | 1 | 0 | 0 | ||||
Safrole | Aromatic Hyd | Unpleasant | 1280 | PI | X | X | ||||
Total aromatic hydrocarbon | 0 | 1 | 1 | 0 | 0 | 0 | ||||
Ethyl butyrate | Ester | Apple | 798 | PI | X | X | X | X | X | |
Ethyl methylbutyrate | Ester | Orange | 842 | PI | X | X | ||||
Ethyl octanoate | Ester | Wine, Fruity | 1185 | PI | X | X | X | X | X | X |
Total ester | 2 | 2 | 1 | 3 | 3 | 2 | ||||
Diacetyl | Ketone | Butter | 639 | PI | X | X | X | X | X | X |
Heptanone | Ketone | Sweet | 895 | PI | X | X | ||||
1-Octen-3-one | Ketone | Mushroom | 973 | PI | X | X | X | X | X | |
2-Nonanone | Ketone | Hot milk | 1082 | PI | X | X | X | X | X | |
3,5-Octadien-2-one | Ketone | Mushroom | 1095 | PI | X | X | X | X | ||
Total ketone | 3 | 5 | 5 | 1 | 4 | 4 | ||||
Acetylpyrazine | Pyrazine | Roast, Rancid | 1027 | PI | X | X | ||||
Total pyrazine | 0 | 0 | 0 | 0 | 1 | 1 | ||||
Thiophene | Sulfur | Garlic | 665 | PI | X | X | ||||
Methional | Sulfur | Potato | 905 | PI | X | X | X | |||
Butyl isothiocyanate | Sulfur | Garlic | 956 | PI | X | X | X | X | X | X |
Total sulfur | 2 | 2 | 2 | 1 | 2 | 2 | ||||
2,3-Dehydro-1,8-cineole | Terpene | Orange | 990 | PI | X | X | X | X | X | X |
(Z)-Linalool oxide | Terpene | Wine, Fruity | 1073 | PI | X | X | X | X | X | X |
(+)-cis-Rose oxide | Terpene | Wine, Fruity | 1112 | PI | X | X | X | X | X | X |
Total terpene | 3 | 3 | 3 | 3 | 3 | 3 | ||||
Total compounds | 13 | 13 | 12 | 9 | 13 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyamakwere, F.; Esposito, G.; Dzama, K.; Gouws, P.; Rapisarda, T.; Belvedere, G.; Masucci, F.; Raffrenato, E. Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese. Appl. Sci. 2022, 12, 3142. https://doi.org/10.3390/app12063142
Nyamakwere F, Esposito G, Dzama K, Gouws P, Rapisarda T, Belvedere G, Masucci F, Raffrenato E. Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese. Applied Sciences. 2022; 12(6):3142. https://doi.org/10.3390/app12063142
Chicago/Turabian StyleNyamakwere, Faith, Giulia Esposito, Kennedy Dzama, Pieter Gouws, Teresa Rapisarda, Giovanni Belvedere, Felicia Masucci, and Emiliano Raffrenato. 2022. "Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese" Applied Sciences 12, no. 6: 3142. https://doi.org/10.3390/app12063142
APA StyleNyamakwere, F., Esposito, G., Dzama, K., Gouws, P., Rapisarda, T., Belvedere, G., Masucci, F., & Raffrenato, E. (2022). Application of Gamma Irradiation Treatment on the Physicochemical and Microbiological Quality of an Artisanal Hard Cheese. Applied Sciences, 12(6), 3142. https://doi.org/10.3390/app12063142