Study on the Efficiency of Temperature/Strain Measurement for Ultra-Long-Distance Optical Fiber Composite Overhead Power Transmission Lines
Abstract
Featured Application
Abstract
1. Introduction
2. Experiment and Theory
3. Simulations of System Measurement Method in Noise Conditions
3.1. Analysis of The Statistical Characteristics of CRN
3.2. Analysis of Anti-noise Performance of the Temperature/Strain Demodulation Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Xing, Y.; Zhang, Z.; Chen, Z. Design and experiment of FBG-based icing monitoring on overhead transmission lines with an improvement trial for windy weather. Sensors 2014, 14, 23954–23969. [Google Scholar] [CrossRef] [PubMed]
- Paladino, D.; Quero, G.; Caucheteur, C.; Mégret, P.; Cusano, A. Hybrid fiber grating cavity for multi-parametric sensing. Opt. Expr. 2010, 18, 10473–10486. [Google Scholar] [CrossRef] [PubMed]
- Micco, A.; Ricciardi, A.; Quero, G.; Crescitelli, A.; Bock, W.J.; Cusano, A. Simple technique for integrating compact silicon devices within optical fibers. Opt. Lett. 2014, 39, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Song, Y. Artificial-Neural-Network-Assisted Sensor Clustering for Robust Communication Network in IoT-Based Electricity Transmission Line Monitoring. IEEE Internet Things J. 2022, 9, 16701–16713. [Google Scholar] [CrossRef]
- Philen, D.; White, I.; Kuhl, F.; Mettler, S. Single-mode fiber OTDR: Experiment and theory. IEEE J. Quan. Electron. 1982, 18, 1499–1508. [Google Scholar] [CrossRef]
- Lu, L.; Sun, X.; Li, B.B.B. Study on Passive, Wide Area and Multi-State Parameter Monitoring and Diagnosis for Power Transmission Lines. In Proceedings of the IEEE International Conference on Power System Technology, Guangzhou, China, 6–8 November 2018. [Google Scholar]
- Minoura, F.; Adachi, K. Technique for Detecting Corrosion Part of OPGW. Electr. Power Constr. 2007, 28, 101–103. [Google Scholar]
- Chai, Q.; Luo, Y.; Ren, J.; Zhang, J.; Yang, J.; Yuan, L.; Peng, G. Review on fiber-optic sensing in health monitoring of power grid. Opt. Eng. 2019, 58, 072007. [Google Scholar] [CrossRef]
- Ogawa, O. Measurement of strain distribution on OPGW using Brillouin scattering light. Trans. Inst. Electr. Eng. Jpn. 2008, 117, 256–261. [Google Scholar]
- Izumita, H.; Koyamada, Y.; Furukawa, S.; Sankawa, I. Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping. J. Lightwave Technol. 1997, 15, 267–278. [Google Scholar] [CrossRef]
- Rosolem, J.; Bassan, F.; Freitas, D.; Salgado, F. Raman DTS based on OTDR improved by using gain-controlled edfa and pre-shaped simplex code. IEEE Sens. J. 2017, 17, 3346–3353. [Google Scholar] [CrossRef]
- Shimizu, K.; Horiguchi, T.; Koyamada, Y.; Kurashima, T. Coherent Self-Heterodyne Brillouin OTDR for Measurement of Brillouin Frequency Shift Distribution in Optical Fibers. J. Lightwave Technol. 1994, 12, 730–736. [Google Scholar] [CrossRef]
- Dakin, J.; Pratt, D.; Bibby, G.; Ross, J. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 1985, 21, 569–570. [Google Scholar] [CrossRef]
- Luo, J.; Hao, Y.; Ye, Q.; Hao, Y.; Li, L. Development of optical fiber sensors based on Brillouin scattering and fbg for on-line monitoring in overhead transmission lines. J. Lightwave Technol. 2013, 31, 1559–1565. [Google Scholar] [CrossRef]
- Lu, L.; Liang, Y.; Li, B.; Guo, J.; Zhang, H.; Zhang, X. Experimental study on location of lightning stroke on OPGW by means of a distributed optical fiber temperature sensor. Opt. Laser Technol. 2015, 65, 79–82. [Google Scholar] [CrossRef]
- Lu, L.; Sun, X.; Bu, X.; Li, B. Coherent optical time domain reflectometry by logarithmic detection and timed random frequency hopping. Opt. Eng. 2017, 56, 024106. [Google Scholar] [CrossRef]
- Lu, L.; Bu, X.; Wang, Q. An optical fiber composite power cable panoramic state monitoring system for typical scene. In Proceedings of the International Conference on Power System Technology, Haikou, China, 10 December 2021. [Google Scholar]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-Optic Distributed Strain and Temperature Sensing with Very High Measurand Resolution Over Long Range Using Coherent OTDR. J. Lightwave Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Wu, Y.; Rao, Y. Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing. J. Lightwave Technol. 2020, 38, 2028–2036. [Google Scholar] [CrossRef]
- Li, Y.; Zhi, Y.; Wei, L.; Li, Y. Research on the correlation characteristics of COTDR scattering signals. Study Opt. Commun. 2012, 4, 70–75. [Google Scholar]
- King, J.; Smith, D.; Richards, K.; Timson, P.; Wright, S. Development of coherent OTDR instrument. J. Lightwave Technol. 1987, 5, 616–624. [Google Scholar] [CrossRef]
- Izumita, H.; Furukawa, S.; Koyamada, Y.; Sankawa, I. Fading noise reduction in coherent OTDR. IEEE Photon. Technol. Lett. 1994, 4, 201–203. [Google Scholar] [CrossRef]
- Healey, P. Fading rates in coherent OTDR. Electron. Lett. 1984, 20, 443–444. [Google Scholar] [CrossRef]
- Izumita, H.; Koyamada, Y.; Furukawa, S.; Sankawa, I. The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena. J. Lightwave Technol. 1994, 12, 1230–1238. [Google Scholar] [CrossRef]
Array Length | 11 | 21 | 31 | 51 | 101 |
---|---|---|---|---|---|
Average number | 10,000 | 10,000 | 10,000 | 10,000 | 1000 |
Time for signal sampling | 110 s | 210 s | 310 s | 510 s | 101 s |
Time for data processing | 78.2 s | 81.6 s | 82.3 s | 85.7 s | 90.4 s |
Total time consumption | 188.2 s | 291.6 s | 392.3 s | 595.7 s | 191.4 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Su, X.; Zhang, C.; Gao, Q.; Bu, X. Study on the Efficiency of Temperature/Strain Measurement for Ultra-Long-Distance Optical Fiber Composite Overhead Power Transmission Lines. Appl. Sci. 2022, 12, 11043. https://doi.org/10.3390/app122111043
Lu L, Su X, Zhang C, Gao Q, Bu X. Study on the Efficiency of Temperature/Strain Measurement for Ultra-Long-Distance Optical Fiber Composite Overhead Power Transmission Lines. Applied Sciences. 2022; 12(21):11043. https://doi.org/10.3390/app122111043
Chicago/Turabian StyleLu, Lidong, Xingchen Su, Chenglong Zhang, Qinghao Gao, and Xiande Bu. 2022. "Study on the Efficiency of Temperature/Strain Measurement for Ultra-Long-Distance Optical Fiber Composite Overhead Power Transmission Lines" Applied Sciences 12, no. 21: 11043. https://doi.org/10.3390/app122111043
APA StyleLu, L., Su, X., Zhang, C., Gao, Q., & Bu, X. (2022). Study on the Efficiency of Temperature/Strain Measurement for Ultra-Long-Distance Optical Fiber Composite Overhead Power Transmission Lines. Applied Sciences, 12(21), 11043. https://doi.org/10.3390/app122111043