Application of Convolutional Neural Network to Defect Diagnosis of Drill Bits
Abstract
1. Introduction
1.1. Machine Fault Diagnosis
1.2. Convolutional Neural Network
2. Experiment Setup
3. Data Processing and Feature Extraction
4. Results and Discussion
4.1. CNN Classification Result
4.2. t-SNE Analysis for 1D CNN
4.3. Computational Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
DBN | Deep Belief Network |
DFT | Discrete Fourier Transform |
EMD | Empirical Mode Decomposition |
MLP | Multi-Layer Perceptron |
RBG | Red, Blue, and Green |
RMS | Root Mean Square |
STFT | Short-Time Fourier transform |
SVM | Support Vector Machine |
t-SNE | t-distributed Stochastic Neighbor Embedding |
VMD | Variational Modal Decomposition |
WPE | Wavelet Packet Energy |
References
- Vununu, C.; Moon, K.-S.; Lee, S.-H.; Kwon, K.-R. A deep feature learning method for drill bits monitoring using the spectral analysis of the acoustic signals. Sensors 2018, 18, 2634. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhu, K. A machine vision system for micro-milling tool condition monitoring. Precis. Eng. 2018, 52, 183–191. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Choudhury, I.A.; Dahari, M.; Nukman, Y.; Dawal, S. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring. Measurement 2016, 92, 208–217. [Google Scholar] [CrossRef]
- Asr, M.Y.; Ettefagh, M.M.; Hassannejad, R.; Razavi, S.N. Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach. Mech. Syst. Signal Process. 2017, 85, 56–70. [Google Scholar] [CrossRef]
- Georgoulas, G.; Karvelis, P.; Loutas, T.; Stylios, C.D. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation. Mech. Syst. Signal Process. 2015, 60, 229–242. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, W.; Lu, T.; Mei, G.; Liang, S. A fault diagnosis method for rolling bearings based on feature fusion of multifractal detrended fluctuation analysis and alpha stable distribution. Shock Vib. 2016, 2016, 1232893. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, Z.; Feng, K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump. Mech. Syst. Signal Process. 2017, 93, 460–493. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, S.; Liang, G.; Hongli, G.; Xin, H.; Hongliang, S. A new bearing fault diagnosis method based on modified convolutional neural networks. Chin. J. Aeronaut. 2020, 33, 439–447. [Google Scholar] [CrossRef]
- Chuya-Sumba, J.; Alonso-Valerdi, L.M.; Ibarra-Zarate, D.I. Deep-Learning Method Based on 1D Convolutional Neural Network for Intelligent Fault Diagnosis of Rotating Machines. Appl. Sci. 2022, 12, 2158. [Google Scholar] [CrossRef]
- Neupane, D.; Kim, Y.; Seok, J.; Hong, J. CNN-Based Fault Detection for Smart Manufacturing. Appl. Sci. 2021, 11, 11732. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Song, L.; Cui, L.; Wang, P. An enhanced intelligent diagnosis method based on multi-sensor image fusion via improved deep learning network. IEEE Trans. Instrum. Meas. 2019, 69, 2648–2657. [Google Scholar] [CrossRef]
- Hoang, D.-T.; Kang, H.-J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 2019, 53, 42–50. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Ding, X.; He, Q. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis. IEEE Trans. Instrum. Meas. 2017, 66, 1926–1935. [Google Scholar] [CrossRef]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Eren, L. Bearing fault detection by one-dimensional convolutional neural networks. Math. Probl. Eng. 2017, 2017, 8617315. [Google Scholar] [CrossRef]
- Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J. Signal Process. Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [Google Scholar] [CrossRef]
- Kao, I.-H.; Wang, W.-J.; Lai, Y.-H.; Perng, J.-W. Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Trans. Instrum. Meas. 2018, 68, 310–324. [Google Scholar] [CrossRef]
- Yari, M.; Bagherpour, R.; Khoshouei, M. Developing a novel model for predicting geomechanical features of carbonate rocks based on acoustic frequency processing during drilling. Bull. Eng. Geol. Environ. 2019, 78, 1747–1759. [Google Scholar] [CrossRef]
- Yari, M.; Bagherpour, R. Investigating an innovative model for dimensional sedimentary rocks characterization using acoustic frequencies analysis during drilling. Rud. Geološko Naft. Zb. 2018, 33, 17–25. [Google Scholar] [CrossRef]
- Khoshouei, M.; Bagherpour, R.; Jalalian, M.H.; Yari, M. Investigating the acoustic signs of different rock types based on the values of acoustic signal RMS. Rud. Geološko Naft. Zb. 2020, 35, 29–38. [Google Scholar] [CrossRef]
- Jeong, M.-J.; Lee, S.-W.; Jang, W.-K.; Kim, H.-J.; Seo, Y.-H.; Kim, B.-H. Prediction of drill bit breakage using an infrared sensor. Sensors 2021, 21, 2808. [Google Scholar] [CrossRef] [PubMed]
- Benesty, J.; Sondhi, M.M.; Huang, Y. Springer Handbook of Speech Processing; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1. [Google Scholar]
- Zhivomirov, H. On the Development of STFT-analysis and ISTFT-synthesis Routines and their Practical Implementation. TEM J. 2019, 8, 56–64. [Google Scholar]
- Li, B.; Chow, M.-Y.; Tipsuwan, Y.; Hung, J.C. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [Google Scholar] [CrossRef]
- Rodríguez, P.V.J.; Negrea, M.; Arkkio, A. A simplified scheme for induction motor condition monitoring. Mech. Syst. Signal Process. 2008, 22, 1216–1236. [Google Scholar] [CrossRef]
- Goundar, S.; Pillai, M.; Mamun, K.; Islam, F.; Deo, R. Real time condition monitoring system for industrial motors. In Proceedings of the 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 2–4 December 2015; pp. 1–9. [Google Scholar]
- Wang, X.; Mao, D.; Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 2021, 173, 108518. [Google Scholar] [CrossRef]
1D CNN | 2D CNN | |||
---|---|---|---|---|
Epoch Number | Accuracy (%) | Time (s) | Accuracy (%) | Time (s) |
1 | 27.7 | 0.42 | 29.33 | 1 |
50 | 60 | 22.1 | 28.0 | 52 |
100 | 81.8 | 30.3 | 57.33 | 96 |
150 | 81.8 | 57.7 | 94.67 | 156 |
200 | 87.2 | 93.8 | 97.33 | 206 |
250 | 90.9 | 121.3 | 97.33 | 252 |
300 | 96.6 | 147.5 | 97.33 | 310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liu, Q.; Han, B.S.; Zhou, W. Application of Convolutional Neural Network to Defect Diagnosis of Drill Bits. Appl. Sci. 2022, 12, 10799. https://doi.org/10.3390/app122110799
Yu Y, Liu Q, Han BS, Zhou W. Application of Convolutional Neural Network to Defect Diagnosis of Drill Bits. Applied Sciences. 2022; 12(21):10799. https://doi.org/10.3390/app122110799
Chicago/Turabian StyleYu, Yongchao, Qi Liu, Boon Siew Han, and Wei Zhou. 2022. "Application of Convolutional Neural Network to Defect Diagnosis of Drill Bits" Applied Sciences 12, no. 21: 10799. https://doi.org/10.3390/app122110799
APA StyleYu, Y., Liu, Q., Han, B. S., & Zhou, W. (2022). Application of Convolutional Neural Network to Defect Diagnosis of Drill Bits. Applied Sciences, 12(21), 10799. https://doi.org/10.3390/app122110799