Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation
Abstract
1. Introduction
2. Statement of the Modal Modification Problem
2.1. Governing Equation
2.2. Topology Optimization
3. Efficient Modal Modification Analysis Method
3.1. Neumann Series Expansion- and Reduced Basis-Based Preconditioner Method
Algorithm 1: Neumann basis procedure |
Algorithm 2: GSO procedure |
3.1.1. Procedure of the Proposed Preconditioner Method
3.1.2. Convergence Condition and Relative Computational Effort of the Neumann Series Expansion
3.2. Parallel Sensitivity Analysis Technique
Algorithm 3: Master-slave parallel procedure |
4. Results and Discussion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Kim, B.; Candler, R.N.; Hopcroft, M.A.; Agarwal, M.; Park, W.T.; Kenny, T.W. Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators. Sens. Actuators Phys. 2007, 136, 125–131. [Google Scholar] [CrossRef]
- Sandberg, R.; Mølhave, K.; Boisen, A.; Svendsen, W. Effect of gold coating on the Q-factor of a resonant cantilever. J. Micromech. Microeng. 2005, 15, 2249–2253. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, G.; Jeng, M.S. Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 2009, 106, 114321. [Google Scholar] [CrossRef]
- Biot, M.A. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lifshitz, R.; Roukes, M.L. Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 2000, 61, 5600. [Google Scholar] [CrossRef]
- Guo, X.; Yi, Y.B.; Pourkamali, S. A finite element analysis of thermoelastic damping in vented MEMS beam resonators. Int. J. Mech. Sci. 2013, 74, 73–82. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space. Z. Angew. Math. Phys. 2017, 68, 1–14. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Comput. 2018, 320, 557–571. [Google Scholar] [CrossRef]
- Hussein, E.M. Mathematical model for thermoelastic Porous spherical region problems. Comput. Therm. Sci. Int. J. 2020, 12. [Google Scholar] [CrossRef]
- Hussein, E.M. Mathematical model for thermo-poroelastic plate saturated with fluid. Spec. Top. Rev. Porous Media Int. J. 2020, 11. [Google Scholar] [CrossRef]
- Fu, H.; Nan, K.; Bai, W.; Huang, W.; Bai, K.; Lu, L.; Zhou, C.; Liu, Y.; Liu, F.; Wang, J. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 2018, 17, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch. Comput. Methods Eng. 2019, 27, 805–830. [Google Scholar] [CrossRef]
- Fu, Y.; Li, L.; Duan, K.; Hu, Y. A thermodynamic design methodology for achieving ultra-high frequency–quality product of microresonators. Thin-Walled Struct. 2021, 166, 108104. [Google Scholar] [CrossRef]
- Lohan, D.J.; Dede, E.M.; Allison, J.T. Topology optimization for heat conduction using generative design algorithms. Struct. Multidiscip. Optim. 2016, 55, 1063–1077. [Google Scholar] [CrossRef]
- Deng, S.; Suresh, K. Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Struct. Multidiscip. Optim. 2017, 56, 1413–1427. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, C.; Wang, X.; Zhou, Y.; Hu, P.; Ma, Z.D. Temperature-constrained topology optimization of thermo-mechanical coupled problems. Eng. Optim. 2019, 51, 1687–1709. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, W. Topology optimization involving thermo-elastic stress loads. Struct. Multidiscip. Optim. 2010, 42, 725–738. [Google Scholar] [CrossRef]
- Homayouni-Amlashi, A.; Schlinquer, T.; Mohand-Ousaid, A.; Rakotondrabe, M. 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters. Struct. Multidiscip. Optim. 2020, 63, 983–1014. [Google Scholar] [CrossRef]
- Candler, R.N.; Duwel, A.; Varghese, M.; Chandorkar, S.A.; Hopcroft, M.A.; Park, W.T.; Kim, B.; Yama, G.; Partridge, A.; Lutz, M. Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J. Microelectromech. Syst. 2006, 15, 927–934. [Google Scholar] [CrossRef]
- Choi, K.K.; Kim, N.H. Structural Sensitivity Analysis and Optimization 1: Linear Systems; Springer Science and Business Media: New York, NY, USA, 2004. [Google Scholar]
- Chen, J.C.; Wada, B. Matrix perturbation for structural dynamic analysis. AIAA J. 1977, 15, 1095–1100. [Google Scholar] [CrossRef]
- Dedieu, J.P.; Tisseur, F. Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Its Appl. 2003, 358, 71–94. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.J.; Wang, X.L. Modal modification of damped asymmetric systems without using the left eigenvectors. Proc. Appl. Mech. Mater. 2014, 490, 331–335. [Google Scholar] [CrossRef]
- Noor, A.K. Recent advances and applications of reduction methods. Appl. Mech. Rev. 1994, 125–146. [Google Scholar] [CrossRef]
- Kirsch, U. Reanalysis and sensitivity reanalysis by combined approximations. Struct. Multidiscip. Optim. 2010, 40, 1–15. [Google Scholar] [CrossRef]
- Sadeeq, M.M.; Abdulkareem, N.M.; Zeebaree, S.R.; Ahmed, D.M.; Sami, A.S.; Zebari, R.R. IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Acad. J. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Shao, W.; Yao, L.; Ge, Z.; Song, Z. Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data. IEEE Trans. Ind. Electron. 2018, 66, 6362–6373. [Google Scholar] [CrossRef]
- Turgut, M.S.; Turgut, O.E.; Afan, H.A.; El-Shafie, A. A novel Master–Slave optimization algorithm for generating an optimal release policy in case of reservoir operation. J. Hydrol. 2019, 577, 123959. [Google Scholar] [CrossRef]
- Šimkus, A.; Turskienė, S. Parallel computing for the finite element method in MATLAB. Comput. Sci. Tech. 2013, 1, 214–221. [Google Scholar] [CrossRef][Green Version]
- Zhang, B.; Xu, S.; Zhang, F.; Bi, Y.; Huang, L. Accelerating matlab code using gpu: A review of tools and strategies. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Zhengzhou, China, 8–10 August 2011; pp. 1875–1878. [Google Scholar] [CrossRef]
- Fu, Y.; Li, L.; Hu, Y. Enlarging quality factor in microbeam resonators by topology optimization. J. Therm. Stress. 2019, 42, 341–360. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multidiscip. Optim. 2009, 40, 409–416. [Google Scholar] [CrossRef]
- Jinling, Y.; Ono, T.; Esashi, M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 2002, 11, 775–783. [Google Scholar] [CrossRef]
- Fried, I.; Malkus, D.S. Finite element mass matrix lumping by numerical integration with no convergence rate loss. Int. J. Solids Struct. 1975, 11, 461–466. [Google Scholar] [CrossRef]
- Kim, K.O. A review of mass matrices for eigenproblems. Comput. Struct. 1993, 46, 1041–1048. [Google Scholar] [CrossRef]
- Jensen, M.S. High convergence order finite elements with lumped mass matrix. Int. J. Numer. Methods Eng. 1996, 39, 1879–1888. [Google Scholar] [CrossRef]
- Wu, S.R. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput. Methods Appl. Mech. Eng. 2006, 195, 5983–5994. [Google Scholar] [CrossRef]
- Guyan, R.J. Reduction of stiffness and mass matrices. AIAA J. 1965, 3, 380. [Google Scholar] [CrossRef]
- Reddy, J.N.; Gartling, D.K. The Finite Element Method in Heat Transfer and Fluid Dynamics; CRC Series in Computational Mechanics and Applied Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Thomson, W. Theory of Vibration with Applications; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Li, L.; Hu, Y.; Deng, W.; Lü, L.; Ding, Z. Dynamics of structural systems with various frequency-dependent damping models. Front. Mech. Eng. 2015, 10, 48–63. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Wang, X. Design sensitivity analysis of dynamic response of nonviscously damped systems. Mech. Syst. Signal Process. 2013, 41, 613–638. [Google Scholar] [CrossRef]
- Ito, K.; Ravindran, S.S. A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 1998, 143, 403–425. [Google Scholar] [CrossRef]
- Sen, S.; Veroy, K.; Huynh, D.B.P.; Deparis, S.; Nguyen, N.C.; Patera, A.T. “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 2006, 217, 37–62. [Google Scholar] [CrossRef]
- Saad, Y. Analysis of augmented Krylov subspace methods. SIAM J. Matrix Anal. Appl. 1997, 18, 435–449. [Google Scholar] [CrossRef]
- Bai, Z.; Su, Y. SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 2005, 26, 640–659. [Google Scholar] [CrossRef]
- Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Kearfott, R.B.; Hu, C.; Novoa, M., III. A review of preconditioners for the interval Gauss-Seidel method. Interval Comput. 1991, 1, 59–85. [Google Scholar]
- Turkel, E. Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 1999, 31, 385–416. [Google Scholar] [CrossRef]
- Mardal, K.; Winther, R. Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 2011, 18, 1–40. [Google Scholar] [CrossRef]
- Pearson, J.W.; Pestana, J. Preconditioners for Krylov subspace methods: An overview. GAMM-Mitteilungen 2020, 43, e202000015. [Google Scholar] [CrossRef]
- Cai, X.C.; Sarkis, M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 1999, 21, 792–797. [Google Scholar] [CrossRef]
- Santo, N.D.; Deparis, S.; Manzoni, A.; Quarteroni, A. Multi space reduced basis preconditioners for large-scale parametrized PDEs. SIAM J. Sci. Comput. 2018, 40, A954–A983. [Google Scholar] [CrossRef]
- Bathe, K.J. Finite Element Procedures; PRENTICE HALL: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Li, Y.; Zhang, Z. Parallel computing: Review and perspective. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 365–369. [Google Scholar] [CrossRef]
- Mei, Y.; Omidvar, M.N.; Li, X.; Yao, X. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans. Math. Softw. (TOMS) 2016, 42, 1–24. [Google Scholar] [CrossRef]
- Estebanez, A.; Llanos, D.R.; Gonzalez-Escribano, A. A survey on thread-level speculation techniques. ACM Comput. Surv. (CSUR) 2016, 49, 1–39. [Google Scholar] [CrossRef]
- Bader, D. Analyzing massive social networks using multicore and multithreaded architectures. In Facing the Multicore-Challenge; Springer: Berlin/Heidelberg, Germany, 2010; p. 1. [Google Scholar]
- Li, L.; Hu, Y.; Wang, X. A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech. Syst. Signal Process. 2012, 30, 61–77. [Google Scholar] [CrossRef]
- Lin, R.; Ng, T. Repeated eigenvalues and their derivatives of structural vibration systems with general nonproportional viscous damping. Mech. Syst. Signal Process. 2021, 159, 107750. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Wang, X. Design sensitivity and Hessian matrix of generalized eigenproblems. Mech. Syst. Signal Process. 2014, 43, 272–294. [Google Scholar] [CrossRef]
- Lin, R.; Mottershead, J.; Ng, T. A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mech. Syst. Signal Process. 2020, 138, 106536. [Google Scholar] [CrossRef]
Clamped-Clamped Microbeam (400 × 40 mesh) | |||
---|---|---|---|
Eigenvalue Solution | Global Sensitivity Number | Combined Time | |
Traditional method (s) | 4.3108 | 6.1492 | 10.46 |
Proposed method (s) | 1.5779 | 0.9175 | 2.4954 |
Time saved | 63.4% | 85.08% | 76.14% |
Clamped-Free Microbeam (300 × 60 mesh) | |||
---|---|---|---|
Eigenvalue Solution | Global Sensitivity Number | Combined Time | |
Traditional method (s) | 5.778 | 9.6368 | 15.4148 |
Proposed method (s) | 1.2508 | 1.7626 | 3.0134 |
Time saved | 78.35% | 81.71% | 80.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Li, L.; Hu, Y. Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Appl. Sci. 2022, 12, 8978. https://doi.org/10.3390/app12188978
Fu Y, Li L, Hu Y. Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Applied Sciences. 2022; 12(18):8978. https://doi.org/10.3390/app12188978
Chicago/Turabian StyleFu, Yu, Li Li, and Yujin Hu. 2022. "Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation" Applied Sciences 12, no. 18: 8978. https://doi.org/10.3390/app12188978
APA StyleFu, Y., Li, L., & Hu, Y. (2022). Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Applied Sciences, 12(18), 8978. https://doi.org/10.3390/app12188978