The Application of Image Texture Analysis Techniques on the Effects of Dry Needling versus Placebo in Low-Back Pain Patients: A Pilot-Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- -
- Grey level co-occurrence matrices (GLCM), described by Haralick et al. [30,31], which consist of comparing pairs of pixels separated by a certain distance (by default a value of 1 is used) and in an angular direction (0°, 45°, 90°, and 135°) along the entire matrix, calculating the frequency with which certain grey levels appear in the image and their relationship with each other.
- -
- Run-length matrices (GLRLM) described by Galloway [32] and calculated from the run-length statistic, which represents a set of consecutive pixels having the same grey level in each of the four angular directions described across the entire matrix.
- -
- Local binary pattern (LBP) analysis, described by Ojala et al. [33], compares the intensity of a central pixel, which is taken as a reference value, with the surrounding pixels.
- -
- Blob analysis, described by Nielsen et al. [34], is based on detecting areas close to each other with a similar eco-intensity called “blobs”.
3. Results
Histogram Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Deyo, R.A.; Tsui-Wu, Y.J. Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine 1987, 12, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Coste, J.; Delecoeuillerie, G.; de Lara, A.C.; Leparc, J.M.; Paolaggi, J.B. Clinical course and prognostic factors in acute low back pain: An inception cohort study in primary care practice. BMJ 1994, 308, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, A.; Lee, H. Neck Pain and Lower Back Pain. Med. Clin. N. Am. 2020, 104, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Cotton, D.; Rao, J.K.; Taichman, D.; Williams, S. Low back pain. Ann. Intern. Med. 2014, 160, ITC6-1. [Google Scholar] [CrossRef]
- Freeman, M.D.; Woodham, M.A.; Woodham, A.W. The role of the lumbar multifidus in chronic low back pain: A review. PM&R 2010, 2, 142–146. [Google Scholar] [CrossRef]
- MacDonald, D.A.; Lorimer Moseley, G.; Hodges, P.W. The lumbar multifidus: Does the evidence support clinical beliefs? Man. Ther. 2006, 11, 254–263. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Q.M.; Liu, Q.G.; Thitham, N.; Li, L.H.; Ma, Y.T.; Zhao, J.M. Review Article (Meta-Analysis): Evidence for Dry Needling in the Management of Myofascial Trigger Points Associated with Low Back Pain: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 99, 144–152. [Google Scholar] [CrossRef]
- Hu, H.T.; Gao, H.; Ma, R.J.; Zhao, X.F.; Tian, H.F.; Li, L. Is dry needling effective for low back pain? A systematic review and PRISMA-compliant meta-analysis. Medicine 2018, 97, e11225. [Google Scholar] [CrossRef] [PubMed]
- Griswold, D.; Wilhelm, M.; Donaldson, M.; Learman, K.; Cleland, J. The effectiveness of superficial versus deep dry needling or acupuncture for reducing pain and disability in individuals with spine-related painful conditions: A systematic review with meta-analysis. J. Man. Manip. Ther. 2019, 27, 128–140. [Google Scholar] [CrossRef]
- Martín-Pintado-Zugasti, A.; Fernández-Carnero, J.; Hernández, J.V.L.; Lobo, C.C.; Beltran-Alacreu, H.; Alguacil-Diego, I.; Gallego-Izquierdo, T.; Pecos-Martin, D. Postneedling Soreness and Tenderness After Different Dosages of Dry Needling of an Active Myofascial Trigger Point in Patients with Neck Pain: A Randomized Controlled Trial. PM&R 2018, 10, 1311–1320. [Google Scholar] [CrossRef]
- Perreault, T.; Dunning, J.; Butts, R. Myofascial Pain and Treatment: Narrative review: The local twitch response during trigger point dry needling: Is it necessary for successful outcomes? J. Bodyw. Mov. Ther. 2017, 21, 940–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppenhaver, S.L.; Walker, M.J.; Su, J.; McGowen, J.M.; Umlauf, L.; Harris, K.D.; Ross, M.D. Changes in lumbar multifidus muscle function and nociceptive sensitivity in low back pain patient responders versus non-responders after dry needling treatment. Man. Ther. 2015, 20, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Dar, G.; Hicks, G.E. The immediate effect of dry needling on multifidus muscles’ function in healthy individuals. J. Back Musculoskelet. Rehabil. 2016, 29, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, A.V.; Pickard, C.M.; Strauss, G.R.; Deshon, L.E.; Gibson, W.; McKay, J. Muscle thickness measurements to estimate gluteus medius and minimus activity levels. Man. Ther. 2014, 19, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Fernández Carnero, S.; Alcocer Ojeda, M.A. Ecografía en Fisioterapia. Rehabilitative Ultrasound Imaging (RUSI). Fisioterapia 2015, 37, 1. [Google Scholar] [CrossRef]
- Whittaker, J.L.; Ellis, R.; Hodges, P.W.; Osullivan, C.; Hides, J.; Carnero, S.F.; Arias-Buria, J.L.; Teyhen, D.S.; Stokes, M.J. Imaging with ultrasound in physical therapy: What is the PT’s scope of practice? A competency-based educational model and training recommendations. Br. J. Sports Med. 2019, 53, 1447–1453. [Google Scholar] [CrossRef]
- Dieterich, A.V.; Deshon, L.; Pickard, C.M.; Strauss, G.R.; McKay, J. Separate assessment of gluteus medius and minimus: B-mode or M-mode ultrasound? Physiother. Theory Pract. 2014, 30, 438–443. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Moon, H.I.; Kim, J.S.; Yi, T.I.; Park, Y.G. Comparison Between M-Mode Ultrasonography and Fluoroscopy for Diaphragm Excursion Measurement in Patients with Acquired Brain Injury. J. Ultrasound Med. 2020, 39, 535–542. [Google Scholar] [CrossRef]
- Kiesel, K.B.; Uhl, T.; Underwood, F.B.; Nitz, A.J. Rehabilitative ultrasound measurement of select trunk muscle activation during induced pain. Man. Ther. 2008, 13, 132–138. [Google Scholar] [CrossRef]
- McMeeken, J.M.; Beith, I.D.; Newham, D.J.; Milligan, P.; Critchley, D.J. The relationship between EMG and change in thickness of transversus abdominis. Clin. Biomech. 2004, 19, 337–342. [Google Scholar] [CrossRef]
- John, E.K.; Beith, I.D. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging? Clin. Biomech. 2007, 22, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, M.J.; Desrochers, A.; Lamontagne, M.; Larivière, C.; Gagnon, D.H. Quantitative ultrasound imaging of Achilles tendon integrity in symptomatic and asymptomatic individuals: Reliability and minimal detectable change. J. Foot Ankle Res. 2016, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saftoiu, A.; Vilmann, P.; Gorunescu, F.; Janssen, J.; Hocke, M.; Larsen, M.; Iglesias-Garcia, J.; Arcidiacono, P.; Will, U.; Giovannini, M.; et al. Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: A multicenter study. Endoscopy 2011, 43, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Sarafraz, H.; Hadian, M.R.; Yazdi, N.A.; Olyaei, G.; Bagheri, H.; Jalaie, S.; Rasouli, O. Test-retest reliability of nerve and muscle morphometric characteristics utilizing ultrasound imaging in individuals with unilateral sciatica and controls. Chiropr. Man. Ther. 2018, 26, 47. [Google Scholar] [CrossRef] [PubMed]
- Koppenhaver, S.L.; Fritz, J.M.; Hebert, J.J.; Kawchuk, G.N.; Childs, J.D.; Parent, E.C.; Gill, N.W.; Teyhen, D.S. Association Between Changes in Abdominal and Lumbar Multifidus Muscle Thickness and Clinical Improvement After Spinal Manipulation. J. Orthop. Sport Phys. Ther. 2011, 41, 389–399. [Google Scholar] [CrossRef]
- Caresio, C.; Molinari, F.; Emanuel, G.; Minetto, M.A. Muscle echo intensity: Reliability and conditioning factors. Clin. Physiol. Funct. Imaging 2015, 35, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Aldasoro Unamuno, E. Métodos de investigación clínica y epidemiología. Gac. Sanit 2013, 27, 570. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.Z. Lidocaine injection versus dry needling to myofascial trigger point. The importance of the local twitch response. Am. J. Phys. Med. Rehabil. 1994, 73, 256–263. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph Image Process 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Nielsen, P.K.; Jensen, B.R.; Darvann, T.; Jørgensen, K.; Bakke, M. Quantitative ultrasound image analysis of the supraspinatus muscle. Clin. Biomech. 2000, 15, S13–S16. [Google Scholar] [CrossRef]
- Sadler, S.; Cassidy, S.; Peterson, B.; Spink, M.; Chuter, V. Gluteus medius muscle function in people with and without low back pain: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 463. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, C.S.; de Jesus, F.L.A.; Machado, M.B.; Ferreira, G.; Ayres, I.G.T.; de Aquino, L.M.; Fukuda, T.Y.; Gomes-Neto, M. Lower limb muscle strength in patients with low back pain: A systematic review and meta-analysis. J. Musculoskelet. Neuronal Interact. 2019, 19, 69. [Google Scholar] [PubMed]
- Suehiro, T.; Mizutani, M.; Ishida, H.; Kobara, K.; Osaka, H.; Watanabe, S. Individuals with chronic low back pain demonstrate delayed onset of the back muscle activity during prone hip extension. J. Electromyogr. Kinesiol. 2015, 25, 675–680. [Google Scholar] [CrossRef]
- Kim, K.B.; Park, H.J.; Song, D.H. Automatic Characterizations of Lumbar Multifidus Muscle and Intramuscular Fat with Fuzzy C-means based Quantization from Ultrasound Images. Curr. Med. Imaging 2020, 16, 592–600. [Google Scholar] [CrossRef]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef]
- Martínez-Payá, J.J.; Ríos-Díaz, J.; Del Baño-Aledo, M.E.; Tembl-Ferrairó, J.I.; Vazquez-Costa, J.F.; Medina-Mirapeix, F. Quantitative Muscle Ultrasonography Using Textural Analysis in Amyotrophic Lateral Sclerosis. Ultrason. Imaging 2017, 39, 357–368. [Google Scholar] [CrossRef]
n | 10 | 10 | |
---|---|---|---|
Age | 26.34 ± 10.61 | 35.83 ± 17.52 | |
Gender, n (%) | Female | 5 (50.0) | 7 (70.0) |
Male | 5 (50.0) | 3 (30.0) | |
Height (cm) | 172.70 ± 7.20 | 171.50 ± 7.17 | |
Weight (kg) | 68.30 ± 11.64 | 65.60 ± 13.27 |
Dry Needling | Sham | Overall | |
---|---|---|---|
Patient pre-treatment | 0.79 | 0.782 | 0.772 |
Patient post-treatment | 0.672 | 0.701 | 0.697 |
Patient 1 week | 0.631 | 0.623 | 0.637 |
Phantom | 0.981 | ||
Patient pre-treatment vs. phantom average | 0.216 | 0.158 | 0.186 |
p Value Features | p Value Features Plus Outcomes | |
---|---|---|
Pre-treatment | 0.074 | 0.070 |
Post-treatment | 0.334 | 0.320 |
1 week | 0.106 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del-Canto-Fernández, A.; Calleja-Martínez, P.; Descalzo-Hoyas, B.; Rodríguez-Posada, S.; Cuenca-Zaldívar, N.; Fernández-Carnero, S.; Naranjo-Cinto, F.; Gallego-Izquierdo, T. The Application of Image Texture Analysis Techniques on the Effects of Dry Needling versus Placebo in Low-Back Pain Patients: A Pilot-Study. Appl. Sci. 2022, 12, 5556. https://doi.org/10.3390/app12115556
Del-Canto-Fernández A, Calleja-Martínez P, Descalzo-Hoyas B, Rodríguez-Posada S, Cuenca-Zaldívar N, Fernández-Carnero S, Naranjo-Cinto F, Gallego-Izquierdo T. The Application of Image Texture Analysis Techniques on the Effects of Dry Needling versus Placebo in Low-Back Pain Patients: A Pilot-Study. Applied Sciences. 2022; 12(11):5556. https://doi.org/10.3390/app12115556
Chicago/Turabian StyleDel-Canto-Fernández, Alba, Pablo Calleja-Martínez, Borja Descalzo-Hoyas, Sebastián Rodríguez-Posada, Nicolás Cuenca-Zaldívar, Samuel Fernández-Carnero, Fermin Naranjo-Cinto, and Tomas Gallego-Izquierdo. 2022. "The Application of Image Texture Analysis Techniques on the Effects of Dry Needling versus Placebo in Low-Back Pain Patients: A Pilot-Study" Applied Sciences 12, no. 11: 5556. https://doi.org/10.3390/app12115556
APA StyleDel-Canto-Fernández, A., Calleja-Martínez, P., Descalzo-Hoyas, B., Rodríguez-Posada, S., Cuenca-Zaldívar, N., Fernández-Carnero, S., Naranjo-Cinto, F., & Gallego-Izquierdo, T. (2022). The Application of Image Texture Analysis Techniques on the Effects of Dry Needling versus Placebo in Low-Back Pain Patients: A Pilot-Study. Applied Sciences, 12(11), 5556. https://doi.org/10.3390/app12115556