Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA
Abstract
1. Introduction
2. MINLP Formulation
2.1. Objective Function Formulation
2.2. Set of Constraints
2.3. Model Interpretation
3. Solution
3.1. Slave Stage
3.2. Master Stage
3.2.1. Proposed Hybrid Discrete-Continuous Codification
3.2.2. Generation of the Initial Solution
3.2.3. Generation of the Candidate Solutions
3.2.4. Bounding the Candidate Solutions
3.2.5. Selection of the New Center of the Hyper-Ellipse
3.2.6. Reduction of the Hyper-Ellipse Radius
3.2.7. Stopping Conditions
- ✓
- If the maximum number of iteration, i.e., is attained, then, the optimal solution found by the DCVSA corresponds to the current center of the hyper-ellipse.
- ✓
- If after , consecutive iterations the center of the hyper-ellipse remains constant, then the optimal solution reached by the DCVSA is the current center of the hyper-ellipse.
3.2.8. Algorithmic Implementation of the DCVSA
Algorithm 1: Schematic implementation of the DCVSA to optimal allocation and sizing of D-STATCOMs in electric distribution networks. |
4. Electric Distribution Test Feeders
5. Computational Implementation and Results
5.1. IEEE 33-Bus
5.2. IEEE 69-Bus
5.3. Daily Operation of the D-STATCOMs
6. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alam, M.S.; Arefifar, S.A. Energy Management in Power Distribution Systems: Review, Classification, Limitations and Challenges. IEEE Access 2019, 7, 92979–93001. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. [Google Scholar] [CrossRef]
- Montoya, O.; Gil-González, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299. [Google Scholar] [CrossRef]
- Sadovskaia, K.; Bogdanov, D.; Honkapuro, S.; Breyer, C. Power transmission and distribution losses—A model based on available empirical data and future trends for all countries globally. Int. J. Electr. Power Energy Syst. 2019, 107, 98–109. [Google Scholar] [CrossRef]
- Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352. [Google Scholar] [CrossRef]
- Marjani, S.R.; Talavat, V.; Galvani, S. Optimal allocation of D-STATCOM and reconfiguration in radial distribution network using MOPSO algorithm in TOPSIS framework. Int. Trans. Electr. Energy Syst. 2018, 29, e2723. [Google Scholar] [CrossRef]
- Tolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in a Distribution System Based on Fuzzy-ACO Approach. IEEE Trans. Sustain. Energy 2015, 6, 210–218. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914. [Google Scholar] [CrossRef]
- Montoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694. [Google Scholar] [CrossRef]
- Saxena, N.K.; Kumar, A. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system. J. Electr. Syst. Inf. Technol. 2016, 3, 442–453. [Google Scholar] [CrossRef]
- Gupta, A.R.; Kumar, A. Energy Savings Using D-STATCOM Placement in Radial Distribution System. Procedia Comput. Sci. 2015, 70, 558–564. [Google Scholar] [CrossRef]
- Samimi, A.; Golkar, M.A. A Novel Method for Optimal Placement of STATCOM in Distribution Networks Using Sensitivity Analysis by DIgSILENT Software. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011. [Google Scholar] [CrossRef]
- Jazebi, S.; Hosseinian, S.; Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm. Energy Convers. Manag. 2011, 52, 2777–2783. [Google Scholar] [CrossRef]
- Devi, S.; Geethanjali, M. Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 562–570. [Google Scholar] [CrossRef]
- Devi, S.; Geethanjali, M. Placement and Sizing of D-STATCOM Using Particle Swarm Optimization. In Lecture Notes in Electrical Engineering; Springer: Chennai, India, 2014; pp. 941–951. [Google Scholar] [CrossRef]
- Bagherinasab, A.; Zadehbagheri, M.; Khalid, S.A.; Gandomkar, M.; Azli, N.A. Optimal Placement of D-STATCOM Using Hybrid Genetic and Ant Colony Algorithm to Losses Reduction. Int. J. Appl. Power Eng. 2013, 2. [Google Scholar] [CrossRef]
- Singh, B.; Singh, S. GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Rep. 2019, 5, 84–103. [Google Scholar] [CrossRef]
- Karami, H.; Zaker, B.; Vahidi, B.; Gharehpetian, G.B. Optimal Multi-objective Number, Locating, and Sizing of Distributed Generations and Distributed Static Compensators Considering Loadability using the Genetic Algorithm. Electr. Power Compon. Syst. 2016, 44, 2161–2171. [Google Scholar] [CrossRef]
- Rukmani, D.K.; Thangaraj, Y.; Subramaniam, U.; Ramachandran, S.; Elavarasan, R.M.; Das, N.; Baringo, L.; Rasheed, M.I.A. A New Approach to Optimal Location and Sizing of DSTATCOM in Radial Distribution Networks Using Bio-Inspired Cuckoo Search Algorithm. Energies 2020, 13, 4615. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. Optimal Allocation of DG and DSTATCOM in Radial Distribution System Using Cuckoo Search Optimization Algorithm. Model. Simul. Eng. 2017, 2017, 2857926. [Google Scholar] [CrossRef]
- Nguyen, K.P.; Fujita, G.; Dieu, V.N. Cuckoo Search Algorithm for Optimal Placement and Sizing of Static Var Compensator in Large-Scale Power Systems. J. Artif. Intell. Soft Comput. Res. 2016, 6, 59–68. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Ravi, K. Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo searching algorithm. Alex. Eng. J. 2018, 57, 2729–2742. [Google Scholar] [CrossRef]
- Taher, S.A.; Afsari, S.A. Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. Int. J. Electr. Power Energy Syst. 2014, 60, 34–44. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Devabalaji, K.; Ravi, K. Optimal Placement and Sizing of DSTATCOM Using Harmony Search Algorithm. Energy Procedia 2015, 79, 759–765. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Li, Z.; Abu-Siada, A.; Guo, Y. Optimum Location and Parameter Setting of STATCOM Based on Improved Differential Evolution Harmony Search Algorithm. IEEE Access 2020, 8, 87810–87819. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Eisapour-Moarref, A. The Imperialist Competitive Algorithm for Optimal Multi-Objective Location and Sizing of DSTATCOM in Distribution Systems Considering Loads Uncertainty. INAE Lett. 2017, 2, 83–95. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. [Google Scholar] [CrossRef]
- Doğan, B.; Ölmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU—Int. J. Electron. Commun. 2015, 69, 1243–1253. [Google Scholar] [CrossRef]
- Özkış, A.; Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm. Inf. Sci. 2017, 402, 124–148. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-Gonzalez, W.; Grisales-Norena, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1439–1443. [Google Scholar] [CrossRef]
- Sharma, A.K.; Saxena, A.; Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost. Int. J. Hybrid Inf. Technol. 2016, 9, 289–302. [Google Scholar] [CrossRef]
Optimization Technique | Refs. |
---|---|
Particle swarm optimization | [6,16,17] |
Genetic algorithms | [14,18,19,20] |
Cuckoo search algorithm | [21,22,23,24] |
Immune algorithm | [25] |
Harmony search algorithm | [26,27] |
Imperialist competitive algorithm | [28] |
Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) | Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 | 17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 | 2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 | 19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 | 20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 | 21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 | 3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 | 23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 | 24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 | 6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 | 26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 | 27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 | 28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 | 29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 | 30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 | 31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
16 | 17 | 1.2890 | 1.7210 | 60 | 20 | 32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) | Node i | Node j | Rij (Ω) | Xij (Ω) | Pj (kW) | Qj (kvar) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 0.0005 | 0.0012 | 0 | 0 | 3 | 36 | 0.0044 | 0.0108 | 26 | 18.55 |
2 | 3 | 0.0005 | 0.0012 | 0 | 0 | 36 | 37 | 0.0640 | 0.1565 | 26 | 18.55 |
3 | 4 | 0.0015 | 0.0036 | 0 | 0 | 37 | 38 | 0.1053 | 0.1230 | 0 | 0 |
4 | 5 | 0.0251 | 0.0294 | 0 | 0 | 38 | 39 | 0.0304 | 0.0355 | 24 | 17 |
5 | 6 | 0.3660 | 0.1864 | 2.6 | 2.2 | 39 | 40 | 0.0018 | 0.0021 | 24 | 17 |
6 | 7 | 0.3810 | 0.1941 | 40.4 | 30 | 40 | 41 | 0.7283 | 0.8509 | 1.2 | 1 |
7 | 8 | 0.0922 | 0.0470 | 75 | 54 | 41 | 42 | 0.3100 | 0.3623 | 0 | 0 |
8 | 9 | 0.0493 | 0.0251 | 30 | 22 | 42 | 43 | 0.0410 | 0.0475 | 6 | 4.3 |
9 | 10 | 0.8190 | 0.2707 | 28 | 19 | 43 | 44 | 0.0092 | 0.0116 | 0 | 0 |
10 | 11 | 0.1872 | 0.0619 | 145 | 104 | 44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.3 |
11 | 12 | 0.7114 | 0.2351 | 145 | 104 | 45 | 46 | 0.0009 | 0.0012 | 39.22 | 26.3 |
12 | 13 | 1.0300 | 0.3400 | 8 | 5 | 4 | 47 | 0.0034 | 0.0084 | 0 | 0 |
13 | 14 | 1.0440 | 0.3450 | 8 | 5.5 | 47 | 48 | 0.0851 | 0.2083 | 79 | 56.4 |
14 | 15 | 1.0580 | 0.3496 | 0 | 0 | 48 | 49 | 0.2898 | 0.7091 | 384.7 | 274.5 |
15 | 16 | 0.1966 | 0.0650 | 45.5 | 30 | 49 | 50 | 0.0822 | 0.2011 | 384.7 | 274.5 |
16 | 17 | 0.3744 | 0.1238 | 60 | 35 | 8 | 51 | 0.0928 | 0.0473 | 40.5 | 28.3 |
17 | 18 | 0.0047 | 0.0016 | 60 | 35 | 51 | 52 | 0.3319 | 0.1114 | 3.6 | 2.7 |
18 | 19 | 0.3276 | 0.1083 | 0 | 0 | 9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.5 |
19 | 20 | 0.2106 | 0.0690 | 1 | 0.6 | 53 | 54 | 0.2030 | 0.1034 | 26.4 | 19 |
20 | 21 | 0.3416 | 0.1129 | 114 | 81 | 54 | 55 | 0.2842 | 0.1447 | 24 | 17.2 |
21 | 22 | 0.0140 | 0.0046 | 5 | 3.5 | 55 | 56 | 0.2813 | 0.1433 | 0 | 0 |
22 | 23 | 0.1591 | 0.0526 | 0 | 0 | 56 | 57 | 1.5900 | 0.5337 | 0 | 0 |
23 | 24 | 0.3460 | 0.1145 | 28 | 20 | 57 | 58 | 0.7837 | 0.2630 | 0 | 0 |
24 | 25 | 0.7488 | 0.2475 | 0 | 0 | 58 | 59 | 0.3042 | 0.1006 | 100 | 72 |
25 | 26 | 0.3089 | 0.1021 | 14 | 10 | 59 | 60 | 0.3861 | 0.1172 | 0 | 0 |
26 | 27 | 0.1732 | 0.0572 | 14 | 10 | 60 | 61 | 0.5075 | 0.2585 | 1244 | 888 |
3 | 28 | 0.0044 | 0.0108 | 26 | 18.6 | 61 | 62 | 0.0974 | 0.0496 | 32 | 23 |
28 | 29 | 0.0640 | 0.1565 | 26 | 18.6 | 62 | 63 | 0.1450 | 0.0738 | 0 | 0 |
29 | 30 | 0.3978 | 0.1315 | 0 | 0 | 63 | 64 | 0.7105 | 0.3619 | 227 | 162 |
30 | 31 | 0.0702 | 0.0232 | 0 | 0 | 64 | 65 | 1.0410 | 0.5302 | 59 | 42 |
31 | 32 | 0.3510 | 0.1160 | 0 | 0 | 11 | 66 | 0.2012 | 0.0611 | 18 | 13 |
32 | 33 | 0.8390 | 0.2816 | 14 | 10 | 66 | 67 | 0.0047 | 0.0014 | 18 | 13 |
33 | 34 | 1.7080 | 0.5646 | 19.5 | 14 | 12 | 68 | 0.7394 | 0.2444 | 28 | 20 |
34 | 35 | 1.4740 | 0.4873 | 6 | 4 | 68 | 69 | 0.0047 | 0.0016 | 28 | 20 |
Period | Act. (pu) | React. (pu) | Period | Act. (pu) | React. (pu) |
---|---|---|---|---|---|
1 | 0.1700 | 0.1477 | 25 | 0.4700 | 0.3382 |
2 | 0.1400 | 0.1119 | 26 | 0.4700 | 0.3614 |
3 | 0.1100 | 0.0982 | 27 | 0.4500 | 0.3877 |
4 | 0.1100 | 0.0833 | 28 | 0.4200 | 0.3434 |
5 | 0.1100 | 0.0739 | 29 | 0.4300 | 0.3771 |
6 | 0.1000 | 0.0827 | 30 | 0.4500 | 0.4269 |
7 | 0.0900 | 0.0831 | 31 | 0.4500 | 0.4224 |
8 | 0.0900 | 0.0637 | 32 | 0.4500 | 0.3647 |
9 | 0.0900 | 0.0702 | 33 | 0.4500 | 0.4226 |
10 | 0.1000 | 0.0875 | 34 | 0.4500 | 0.3081 |
11 | 0.1100 | 0.0728 | 35 | 0.4500 | 0.2994 |
12 | 0.1300 | 0.1214 | 36 | 0.4500 | 0.3336 |
13 | 0.1400 | 0.1231 | 37 | 0.4300 | 0.3543 |
14 | 0.1700 | 0.1390 | 38 | 0.4200 | 0.3399 |
15 | 0.2000 | 0.1410 | 39 | 0.4600 | 0.4234 |
16 | 0.2500 | 0.1998 | 40 | 0.5000 | 0.4061 |
17 | 0.3100 | 0.2497 | 41 | 0.4900 | 0.3820 |
18 | 0.3400 | 0.3224 | 42 | 0.4700 | 0.3820 |
19 | 0.3600 | 0.3263 | 43 | 0.4500 | 0.3887 |
20 | 0.3900 | 0.3661 | 44 | 0.4200 | 0.2751 |
21 | 0.4200 | 0.3585 | 45 | 0.3800 | 0.3383 |
22 | 0.4300 | 0.3316 | 46 | 0.3400 | 0.2355 |
23 | 0.4500 | 0.4187 | 47 | 0.2900 | 0.2301 |
24 | 0.4600 | 0.3652 | 48 | 0.2500 | 0.1818 |
Par. | Value | Unit | Par. | Value | Unit |
---|---|---|---|---|---|
CkWh | 0.1390 | US$kWh | T | 365 | Days |
Δh | 0.50 | h | α | 0.30 | US$/MVAr3 |
β | −305.10 | US$/MVAr2 | γ | 127,380 | US$/MVAr |
k1 | 6/2190 | 1/Days | k2 | 10 | Years |
Discrete-continuous vortex search algorithm | |
Population size: 10 | Iterations’ number: 1000 |
Population building: Gaussian Distribution | |
SAPF method | |
Iterations’ number: 1000 | Convergence error: 1 × 10−10 |
Experimental tests in each test feeder | |
Consecutive evaluations | 100 |
Approach | Location and Size Node (MVAr) | Acost (US $/Year) |
---|---|---|
Caso base | — | 112,740.90 |
COUENNE | {16(0.0109), 17(0.0224), 18(0.2065)} | 107,589.50 |
BONMIN | {17(0.0339), 18(0.0227), 30(0.2395)} | 102,447.29 |
DCVSA | {14(0.1599), 30(0.3591), 32(0.1072)} | 98,497.90 |
Sol. | Location and Size Node (MVAr) | Acost (US $/Year) | Rep. |
---|---|---|---|
1 | {14(0.1599), 30(0.3591), 32(0.1072)} | 98,497.90 | 36 |
2 | {11(0.0659), 14(0.1148), 30(0.4578)} | 98,564.29 | 22 |
3 | {10(0.0642), 14(0.1175), 30(0.4574)} | 98,565.03 | 10 |
4 | {11(0.0787), 15(0.1019), 30(0.4578)} | 98,567.91 | 8 |
5 | {12(0.1110), 14(0.0666), 30(0.4591)} | 98,569.08 | 2 |
6 | {12(0.0804), 15(0.0972), 30(0.4591)} | 98,570.12 | 4 |
Sol. | Location and Size Node (MVAr) | Acost (US $/Year) | Rep. |
---|---|---|---|
1 | {21(0.0839), 61(0.4601), 64(0.1139)} | 102,990.80 | 49 |
2 | {17(0.0862), 61(0.4597), 64(0.1139)} | 103,022.77 | 1 |
3 | {21(0.0695), 26(0.0143), 61(0.5741)} | 103,101.25 | 3 |
4 | {21(0.0704), 27(0.0134), 61(0.5741)} | 103,101.31 | 1 |
5 | {21(0.0687), 25(0.0152), 61(0.5741)} | 103,101.52 | 1 |
6 | {22(0.0695), 26(0.0143), 61(0.5741)} | 103,101.66 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. https://doi.org/10.3390/app11052175
Montoya OD, Gil-González W, Hernández JC. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Applied Sciences. 2021; 11(5):2175. https://doi.org/10.3390/app11052175
Chicago/Turabian StyleMontoya, Oscar Danilo, Walter Gil-González, and Jesus C. Hernández. 2021. "Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA" Applied Sciences 11, no. 5: 2175. https://doi.org/10.3390/app11052175
APA StyleMontoya, O. D., Gil-González, W., & Hernández, J. C. (2021). Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Applied Sciences, 11(5), 2175. https://doi.org/10.3390/app11052175