Anthropometric Profile Assessed by Bioimpedance and Anthropometry Measures of Male and Female Rugby Players Competing in the Spanish National League
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Anthropometric Assessment
2.4. Bioimpedance Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crewther, B.T.; Potts, N.; Kilduff, L.P.; Drawer, S.; Cook, C.J. Performance indicators during international rugby union matches are influenced by a combination of physiological and contextual variables. J. Sci. Med. Sport 2020, 23, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duthie, G.; Pyne, D.; Hooper, S. Applied physiology and game analysis of rugby union. Sports Med. 2003, 33, 973–991. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, A.; Draper, N.; Lewis, J.; Gieseg, S.P.; Gill, N. Positional demands of professional rugby. Eur. J. Sport Sci. 2015, 15, 480–487. [Google Scholar] [CrossRef]
- Gabbett, T.; King, T.; Jenkins, D. Applied physiology of rugby league. Sports Med. 2008, 38, 119–138. [Google Scholar] [CrossRef]
- Meir, R.A. Seasonal changes in estimates of body composition in professional rugby league players. Sport Health 1993, 11, 27–31. [Google Scholar]
- Brazier, J.; Antrobus, M.; Stebbings, G.K.; Day, S.H.; Callus, P.; Erskine, R.M.; Bennett, M.A.; Kilduff, L.P.; Williams, A.G. Anthropometric and Physiological Characteristics of Elite Male Rugby Athletes. J. Strength Cond. Res. 2020, 34, 1790–1801. [Google Scholar] [CrossRef]
- Holway, F.E.; Garavaglia, R. Kinanthropometry of Group I rugby players in Buenos Aires, Argentina. J. Sports Sci. 2009, 27, 1211–1220. [Google Scholar] [CrossRef]
- Zemski, A.J.; Slater, G.J.; Broad, E.M. Body composition characteristics of elite Australian rugby union athletes according to playing position and ethnicity. J. Sports Sci. 2015, 33, 970–978. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Physical collisions and injury in professional rugby league match-play. J. Sci. Med. Sport 2011, 14, 210–215. [Google Scholar] [CrossRef]
- Fontana, F.Y.; Colosio, A.; De Roia, G.F.; Da Lozzo, G.; Pogliaghi, S. Anthropometrics of Italian Senior Male Rugby Union Players: From Elite to Second Division. Int. J. Sports Physiol. Perform. 2015, 10, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; O’Connor, H.; Kay, S.; Cook, R.; Parker, H.; Orr, R. Anthropometric characteristics of Australian junior representative rugby league players. J. Sci. Med. Sport 2014, 17, 546–551. [Google Scholar] [CrossRef]
- Quarrie, K.L.; Wilson, B.D. Force production in the rugby union scrum. J. Sports Sci. 2000, 18, 237–246. [Google Scholar] [CrossRef]
- Wang, Z.M.; Pierson, R.N., Jr.; Heymsfield, S.B. The five-level model: A new approach to organizing body-composition research. Am. J. Clin. Nutr. 1992, 56, 19–28. [Google Scholar] [CrossRef]
- Siri, W.E. Body composition from fluid spaces and density: Analyses of methods. In Techniques for Measuring Body Composition; Brozek, J., Henschel, A., Eds.; National Academy of Sciences-National Research Council: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
- Silva, A.M.; Fields, D.A.; Sardinha, L.B. A PRISMA-driven systematic review of predictive equations for assessing fat and fat-free mass in healthy children and adolescents using multicomponent molecular models as the reference method. J. Obes. 2013, 2013, 148696. [Google Scholar] [CrossRef]
- Portal, S.; Rabinowitz, J.; Adler-Portal, D.; Burstein, R.P.; Lahav, Y.; Meckel, Y.; Nemet, D.; Eliakim, A. Body fat measurements in elite adolescent volleyball players: Correlation between skinfold thickness, bioelectrical impedance analysis, air-displacement plethysmography, and body mass index percentiles. J. Pediatr. Endocrinol. Metab. 2010, 23, 395–400. [Google Scholar] [CrossRef]
- Yamada, Y.; Masuo, Y.; Nakamura, E.; Oda, S. Inter-sport variability of muscle volume distribution identified by segmental bioelectrical impedance analysis in four ball sports. Open Access J. Sports Med. 2013, 4, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.; Marfell-Jones, M.; International Society for Advancement of Kinanthropometry. International Standards for Anthropo-Metric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; p. 137. [Google Scholar]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Mulasi, U.; Kuchnia, A.J.; Cole, A.J.; Earthman, C.P. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr. Clin. Pract. 2015, 30, 180–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sella, F.S.; McMaster, D.T.; Beaven, C.M.; Gill, N.D.; Hebert-Losier, K. Match Demands, Anthropometric Characteristics, and Physical Qualities of Female Rugby Sevens Athletes: A Systematic Review. J. Strength Cond. Res. 2019, 33, 3463–3474. [Google Scholar] [CrossRef]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. Changes in anthropometry and performance, and their interrelationships, across three seasons in elite youth rugby league players. J. Strength Cond. Res. 2014, 28, 3128–3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Correlates of tackling ability in high-performance rugby league players. J. Strength Cond. Res. 2011, 25, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Till, K.; Cobley, S.; O’Hara, J.; Morley, D.; Chapman, C.; Cooke, C. Retrospective analysis of anthropometric and fitness characteristics associated with long-term career progression in Rugby League. J. Sci. Med. Sport 2015, 18, 310–314. [Google Scholar] [CrossRef]
- Till, K.; Jones, B.; Darrall-Jones, J.; Emmonds, S.; Cooke, C. Longitudinal development of anthropometric and physical characteristics within academy rugby league players. J. Strength Cond. Res. 2015, 29, 1713–1722. [Google Scholar] [CrossRef]
- WMA. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. Protocolo Internacional para la Valoración Antropométrica. Sociedad Internacional para el Avance de la Cineantropometría; Universidad Católica de Murcia: Murcia, Spain, 2019. [Google Scholar]
- Carter, J.E.L. Body Composition of Montreal Olympic Athletes. In Physical Structure of Olympic Athletes Part I The Montreal Olympic Games Anthropological Project; Carter, J.E.L., Ed.; Karger: Basel, Switzerland, 1982; Volume 16, pp. 107–116. [Google Scholar]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Carter, J. Part 1: The Heath-Carter Anthropometric Somatotype-Instruction Manual; TeP and ROSSCRAFT: Surrey, BC, Canada, 2002; 26p. [Google Scholar]
- Alvero, J.R.; Cabañas, M.D.; Herrero De Lucas, A.; Riaza, L.M.; Moreno, C.; Jordi, P.; Manzañido, P.; Sillero, M.; Sirvent, J.E. Body composition assessment in sports medicine. Statement of spanish group of kinanthropometry of spanish federation of sports medicine. Arch. Med. Deporte 2009, 131, 166–179. [Google Scholar]
- Sergi, G.; De Rui, M.; Stubbs, B.; Veronese, N.; Manzato, E. Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the pros and cons. Aging Clin. Exp. Res. 2017, 29, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Posthumus, L.; Macgregor, C.; Winwood, P.; Darry, K.; Driller, M.; Gill, N. Physical and Fitness Characteristics of Elite Professional Rugby Union Players. Sports 2020, 8, 85. [Google Scholar] [CrossRef]
- Quarrie, K.L.; Handcock, P.; Waller, A.E.; Chalmers, D.J.; Toomey, M.J.; Wilson, B.D. The New Zealand rugby injury and performance project. III. Anthropometric and physical performance characteristics of players. Br. J. Sports Med. 1995, 29, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, L.; Morais, T.; Rocha, H.; James, N. Fitness profiles of elite portuguese rugby union players. J. Hum. Kinet. 2014, 41, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Schick, D.M.; Molloy, M.G.; Wiley, J.P. Injuries during the 2006 Women’s Rugby World Cup. Br. J. Sports Med. 2008, 42, 447–451. [Google Scholar] [CrossRef]
- Cahill, N.; Lamb, K.; Worsfold, P.; Headey, R.; Murray, S. The movement characteristics of English Premiership rugby union players. J. Sports Sci. 2013, 31, 229–237. [Google Scholar] [CrossRef]
- Jones, M.R.; West, D.J.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. Eur. J. Sport Sci. 2015, 15, 488–496. [Google Scholar] [CrossRef]
- Canda, A.S.; Cabanero, M.; Mullán, M.J.; Rubio, S. Anthropometric profile of Spanish National Rugby Team: Comparisions between field positions. Med. Sport 1998, 51, 29–39. [Google Scholar]
- Hene, N.M. Physical Fitness of Elite Women’s Rugby Union Players over a Competition Season; University of the Western Cape: Cape Town, South Africa, 2011. [Google Scholar]
- Canda, A.S. Variables Antropométricas de la Población Deportiva Española; Consejo Superior de Deportes, Subdirección General de Deporte y Salud: Madrid, Spain, 2012. [Google Scholar]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef]
- Zemski, A.J.; Keating, S.E.; Broad, E.M.; Marsh, D.J.; Hind, K.; Slater, G.J. Preseason Body Composition Adaptations in Elite White and Polynesian Rugby Union Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 29, 9–17. [Google Scholar] [CrossRef]
- Fuller, C.W.; Taylor, A.E.; Brooks, J.H.; Kemp, S.P. Changes in the stature, body mass and age of English professional rugby players: A 10-year review. J. Sports Sci. 2013, 31, 795–802. [Google Scholar] [CrossRef]
- Olds, T. The evolution of physique in male rugby union players in the twentieth century. J. Sports Sci. 2001, 19, 253–262. [Google Scholar] [CrossRef]
- Till, K.; Scantlebury, S.; Jones, B. Anthropometric and Physical Qualities of Elite Male Youth Rugby League Players. Sports Med. 2017, 47, 2171–2186. [Google Scholar] [CrossRef] [Green Version]
- Speranza, M.J.; Gabbett, T.J.; Johnston, R.D.; Sheppard, J.M. Muscular Strength and Power Correlates of Tackling Ability in Semiprofessional Rugby League Players. J. Strength Cond. Res. 2015, 29, 2071–2078. [Google Scholar] [CrossRef]
- Lazzer, S.; Bedogni, G.; Agosti, F.; De Col, A.; Mornati, D.; Sartorio, A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br. J. Nutr. 2008, 100, 918–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano Berges, G.; Matute Llorente, A.; Gomez Bruton, A.; Gonzalez Aguero, A.; Vicente Rodriguez, G.; Casajus, J.A. Body fat percentage comparisons between four methods in young football players: Are they comparable? Nutr. Hosp. 2017, 34, 1119–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, C.J.; Dengel, D.R.; Bosch, T.A. Total and Segmental Body Composition Examination in Collegiate Football Players Using Multifrequency Bioelectrical Impedance Analysis and Dual X-ray Absorptiometry. J. Strength Cond. Res. 2018, 32, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodriguez, G.; Rey-Lopez, J.P.; Mesana, M.I.; Poortvliet, E.; Ortega, F.B.; Polito, A.; Nagy, E.; Widhalm, K.; Sjostrom, M.; Moreno, L.A.; et al. Reliability and intermethod agreement for body fat assessment among two field and two laboratory methods in adolescents. Obesity 2012, 20, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Thornton, H.R.; Scott, T.J.; Ballard, D.A.; Duthie, G.M.; Wood, L.G.; Dascombe, B.J. Validity of Skinfold-Based Measures for Tracking Changes in Body Composition in Professional Rugby League Players. Int. J. Sports Physiol. Perform. 2016, 11, 261–266. [Google Scholar] [CrossRef]
- Alvero-Cruza, J.R.; Correas Gómez, L.; Ronconia, M.; Fernández-Vázqueza, R.; Porta i Manzañido, J. La bioimpedancia eléctrica como método de estimación de la composición corporal, normas prácticas de utilización. Rev. Andal. Med. Deporte 2011, 4, 167–174. [Google Scholar]
Variable | Sex | Position | p-Value Sex | p-Value Position | p-Value Sex·Position | |
---|---|---|---|---|---|---|
Backs (n: 46) | Forwards (n: 54) | |||||
Height (m) | Male | 1.78 ± 0.07 * | 1.82 ± 0.05 * | <0.001 | 0.030 | 0.980 |
Female | 1.62 ± 0.05 * | 1.66 ± 0.08 * | ||||
Weight (kg) | Male | 80.1 ± 8.7 *,λ | 100.1 ± 11.2 *,λ | <0.001 | <0.001 | 0.452 |
Female | 57.5 ± 6.2 *,λ | 73.5 ± 10.7 *,λ | ||||
Body mass index (kg·m−2) | Male | 25.6 ± 3.1 *,λ | 30.3 ± 3.9 *,λ | <0.001 | <0.001 | 0.955 |
Female | 21.7 ± 2.0 *,λ | 26.7 ± 4.0 *,λ |
Variable | Sex | Position | p-Value Sex | p-Value Position | p-Value Sex·Position | |
---|---|---|---|---|---|---|
Backs (n: 46) | Forwards (n: 54) | |||||
% Body fat anthropometry | Male | 14.9 ± 4.1 *,λ | 17.8 ± 6.8 *,λ | 0.001 | 0.009 | 0.518 |
Female | 18.7 ± 1.9 *,λ | 23.5 ± 4.8 *,λ | ||||
% Body fat BIA | Male | 16.4 ± 7.4 λ | 21.0 ± 7.7 λ | 0.203 | 0.019 | 0.652 |
Female | 18.4 ± 7.5 λ | 25.2 ± 12.2 λ | ||||
Fat mass anthropometry (Kg) | Male | 12.4 ± 3.8 λ | 18.0 ± 7.5 λ | 0.275 | <0.001 | 0.780 |
Female | 11.4 ± 2.1 λ | 16.2 ± 6.1 λ | ||||
Fat mass BIA(Kg) | Male | 12.4 ± 5.7 λ | 21.1 ± 8.7 λ | 0.959 | <0.001 | 0.844 |
Female | 12.6 ± 3.1 λ | 20.6 ± 9.0 λ | ||||
Muscle mass anthropometry (Kg) | Male | 37.6 ± 3.4 *,λ | 42.4 ± 4.5 *,λ | <0.001 | <0.001 | 0.219 |
Female | 27.1 ± 2.5 *,λ | 29.8 ± 3.7 *,λ | ||||
Muscle mass BIA(Kg) | Male | 39.5 ± 4.5 *,λ | 44.5 ± 4.2 *,λ | <0.001 in Forwards <0.001 in Backs | 0.183 in Female <0.001 in Male | 0.030 |
Female | 26.6 ± 1.5 * | 28.5 ± 4.4 * | ||||
% Body lean mass anthropometry | Male | 45.8 ± 3.2 | 41.6 ± 9.4 | 0.059 | 0.748 | 0.644 |
Female | 44.4 ± 1.2 | 41.8 ± 3.9 | ||||
% Body lean mass BIA | Male | 48.1 ± 4.5 * | 45.4 ± 4.4 * | <0.001 | 0.145 | 0.671 |
Female | 39.7 ± 14.1 * | 34.8 ± 14.2 * | ||||
Body lean mass anthropometry (Kg) | Male | 69.6 ± 5.7 *,λ | 79.8 ± 7.2 *,λ | <0.001 | <0.001 | 0.059 |
Female | 49.4 ± 3.7 *,λ | 54.3 ± 7.1 *,λ | ||||
Body lean mass BIA(Kg) | Male | 57.0 ± 26.0 *,λ | 73.1 ± 19.8 *,λ | <0.001 | 0.024 | 0.279 |
Female | 35.2 ± 22.1 *,λ | 40.9 ± 22.0 *,λ |
Variable | Sex | Position | p-Value Sex | p-Value Position | p-Value Sex·Position | |
---|---|---|---|---|---|---|
Backs (n:46) | Forwards (n:54) | |||||
Triceps skinfold (mm) | Male | 12.2 ± 5.0 *,λ | 16.9 ± 7.4 λ | 0.029 | 0.015 | 0.853 |
Female | 16.4 ± 4.7 * | 20.4 ± 6.6 | ||||
Subscapular skinfold (mm) | Male | 12.1 ± 4.9 λ | 17.5 ± 9.8 λ | 0.231 | 0.005 | 0.880 |
Female | 9.5 ± 1.9 λ | 15.5 ± 5.8 λ | ||||
Iliac crest skinfold (mm) | Male | 13.5 ± 8.2 λ | 20.8 ± 10.7 λ | 0.268 | 0.020 | 0.509 |
Female | 12.4 ± 6.2 | 16.5 ± 7.5 | ||||
Abdominal skinfold (mm) | Male | 21.4 ± 10.9 * | 28.3 ± 10.6 * | 0.002 | 0.001 | 0.746 |
Female | 12.6 ± 3.8 * | 21.0 ± 6.1 * | ||||
Front thigh skinfold (mm) | Male | 16.1 ± 6.7 | 20.0 ± 8.7 | <0.001 | 0.057 | 0.943 |
Female | 24.0 ± 7.1 | 28.2 ± 7.3 | ||||
Medial calf skinfold (mm) | Male | 9.9 ± 6.5 | 11.4 ± 5.4 * | 0.001 | 0.045 | 0.300 |
Female | 13.7 ± 3.2 λ | 18.3 ± 6.4 *,λ | ||||
Sum of 6 skinfolds (mm) | Male | 86.5 ± 39.1 λ | 115.9 ± 41.1 λ | 0.605 | 0.028 | 0.504 |
Female | 98.5 ± 27.9 | 114.3 ± 32.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Álvarez, J.J.; Montoya, J.J.; Solís-Mencia, C.; Miguel-Tobal, F.; López-Tapia, P.; Sánchez-Oliver, A.J.; Domínguez, R.; Martínez-Sanz, J.M. Anthropometric Profile Assessed by Bioimpedance and Anthropometry Measures of Male and Female Rugby Players Competing in the Spanish National League. Appl. Sci. 2021, 11, 11759. https://doi.org/10.3390/app112411759
Ramos-Álvarez JJ, Montoya JJ, Solís-Mencia C, Miguel-Tobal F, López-Tapia P, Sánchez-Oliver AJ, Domínguez R, Martínez-Sanz JM. Anthropometric Profile Assessed by Bioimpedance and Anthropometry Measures of Male and Female Rugby Players Competing in the Spanish National League. Applied Sciences. 2021; 11(24):11759. https://doi.org/10.3390/app112411759
Chicago/Turabian StyleRamos-Álvarez, Juan José, Juan José Montoya, Cristian Solís-Mencia, Francisco Miguel-Tobal, Paola López-Tapia, Antonio Jesús Sánchez-Oliver, Raúl Domínguez, and José Miguel Martínez-Sanz. 2021. "Anthropometric Profile Assessed by Bioimpedance and Anthropometry Measures of Male and Female Rugby Players Competing in the Spanish National League" Applied Sciences 11, no. 24: 11759. https://doi.org/10.3390/app112411759
APA StyleRamos-Álvarez, J. J., Montoya, J. J., Solís-Mencia, C., Miguel-Tobal, F., López-Tapia, P., Sánchez-Oliver, A. J., Domínguez, R., & Martínez-Sanz, J. M. (2021). Anthropometric Profile Assessed by Bioimpedance and Anthropometry Measures of Male and Female Rugby Players Competing in the Spanish National League. Applied Sciences, 11(24), 11759. https://doi.org/10.3390/app112411759