# Comparison between the Lagrangian and Eulerian Approach for Simulating Regular and Solitary Waves Propagation, Breaking and Run-Up

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

_{t}. The eddy viscosity can be determined from a turbulent time-scale (or velocity scale) and a turbulent length-scale using the turbulent kinetic energy (k) and the turbulence dissipation rate (ε).

_{t}for a wide range of flows, is the two-equation k-ε model [50]. The two-equation k-ε model has been utilized in Shao [51,52] and De Padova et al. [53], showing a good comparison between the numerical and experimental turbulent quantities.

## 2. Lagrangian and Eulerian Methods

#### 2.1. SPH Formulation

**f**represents accelerations due to external forces, such as gravity. In the SPH formalism, the discrete form of the continuity equation at a point i can be written as follows [72]:

_{i}is the numerical speed of sound, V

_{j}is the associated volume of the j-th particle and ${\psi}_{ij}$ is the artificial dissipation term; in the present paper, the artificial dissipation term proposed by Molteni and Colagrossi [74] was chosen.

_{i}is obtained coupling the viscous dissipation in the laminar regime, as approximated by Lo and Shao [68], with a sub-particle scale (SPS) model [71]. The former can be expressed with the following formula:

_{0}is the kinematic viscosity and $\eta $ is a parameter that guarantees a non-singular operator. In the DualSPHysics solver, $\eta $ is equal to 0.001h

^{2}, with $\left\{\eta \in \mathbb{R};{x}_{i}-{x}_{j}\eta \right\}$.

#### 2.2. Non-Hydrostatic Discontinuous/Continuous Galerkin Model

## 3. Applications

#### 3.1. Experimental Set Up

#### 3.1.1. Regular Breaking Waves on a Plane Beach

_{0}, the wave period T, the offshore wavelength L

_{0}, the Irribarren number ξ

_{0}, which has been estimated in section 76, located where the bottom is flat with water depth d equal to 0.70 m. Based on the Irribarren number ξ

_{0}, the two regular tested waves were characterized by a spilling/plunging and plunging breakers, respectively.

#### 3.1.2. Solitary Waves

#### 3.2. Numerical Parameters

#### 3.2.1. SPH Parameters

#### 3.2.2. Eulerian Model Parameters

## 4. Results and Performance Analysis

#### 4.1. Spilling/Plunging and Plunging Breaking Waves on a Plane Beach

_{c}and X

_{m}are the modeled and measured values, respectively, while the bar denotes the average of the modeled and measured values. It takes into account the relative error among experimental and output values, and it will exhibit values closer to one for higher levels of accordance.

#### 4.2. Solitary Waves Propagation

#### 4.3. Performance Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chang, K.A.; Liu, P.L.F. Measurement of Breaking Waves Using Particle Image Velocimetry. In Proceedings of the Coastal Engineering 1996, Orlando, FL, USA, 2–6 September 1996; American Society of Civil Engineers: Orlando, FL, USA, 5 August 1997; pp. 527–536. [Google Scholar]
- Umeyama, M. Eulerian–Lagrangian Analysis for Particle Velocities and Trajectories in a Pure Wave Motion Using Particle Image Velocimetry. Philos. Trans. R. Soc. A.
**2012**, 370, 1687–1702. [Google Scholar] [CrossRef] - Maraglino, D.; Ben Meftah, M.; De Serio, F.; Mossa, M. Field Measurements in a Flow around a Hydrofoil: Some Preliminary Results. In Proceedings of the 2019 IMEKO TC19 International Workshop on Metrology for the Sea, Genova, Italy, 3–5 October 2019; pp. 270–275. [Google Scholar]
- Umeyama, M. Coupled PIV and PTV Measurements of Particle Velocities and Trajectories for Surface Waves Following a Steady Current. J. Waterw. Port Coast. Ocean Eng.
**2011**, 137, 85–94. [Google Scholar] [CrossRef] - Lemos, C.M. Wave Breaking: A Numerical Study; Lecture Notes in Engineering; Springer: Berlin, Germany; New York, NY, USA, 1992; ISBN 9783540549420. [Google Scholar]
- Lin, P.; Liu, P.L.-F. A Numerical Study of Breaking Waves in the Surf Zone. J. Fluid Mech.
**1998**, 359, 239–264. [Google Scholar] [CrossRef] - Calvo, L.; De Padova, D.; Mossa, M.; Rosman, P. Non-Hydrostatic Discontinuous/Continuous Galerkin Model for Wave Propagation, Breaking and Runup. Computation
**2021**, 9, 47. [Google Scholar] [CrossRef] - Danilov, S.; Wang, Q. Resolving Eddies by Local Mesh Refinement. Ocean Model.
**2015**, 93, 75–83. [Google Scholar] [CrossRef][Green Version] - Viti, N.; Valero, D.; Gualtieri, C. Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water
**2018**, 11, 28. [Google Scholar] [CrossRef][Green Version] - Ma, J.; Oberai, A.A.; Lahey, R.T.; Drew, D.A. Modeling Air Entrainment and Transport in a Hydraulic Jump Using Two-Fluid RANS and DES Turbulence Models. Heat Mass Transf.
**2011**, 47, 911–919. [Google Scholar] [CrossRef] - Witt, A.; Gulliver, J.; Shen, L. Simulating Air Entrainment and Vortex Dynamics in a Hydraulic Jump. Int. J. Multiph. Flow
**2015**, 72, 165–180. [Google Scholar] [CrossRef][Green Version] - Bayon, A.; Valero, D.; García-Bartual, R.; Vallés-Morán, F.J.; López-Jiménez, P.A. Performance Assessment of OpenFOAM and FLOW-3D in the Numerical Modeling of a Low Reynolds Number Hydraulic Jump. Environ. Model. Softw.
**2016**, 80, 322–335. [Google Scholar] [CrossRef] - De Padova, D.; Ben Meftah, M.; De Serio, F.; Mossa, M. Management of Dredging Activities in a Highly Vulnerable Site: Simulation Modelling and Monitoring Activity. JMSE
**2020**, 8, 1020. [Google Scholar] [CrossRef] - De Padova, D.; De Serio, F.; Mossa, M.; Armenio, E. Investigation of the current circulation offshore Taranto by using field measurements and numerical model. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, 1–5 (IEEE, 2017), Torino, Italy, 22–25 May 2017. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Bulycheva, E.V. Numerical Simulation of Risks of Oil Pollution in the Southeastern Baltic Sea and in the Gulf of Finland. Mod. Probl. Remote Sens. Earth Space
**2014**, 11, 56–75. [Google Scholar] - De Padova, D.; Mossa, M.; Adamo, M.; De Carolis, G.; Pasquariello, G. Synergistic Use of an Oil Drift Model and Remote Sensing Observations for Oil Spill Monitoring. Environ. Sci. Pollut. Res.
**2017**, 24, 5530–5543. [Google Scholar] [CrossRef] - Armenio, E.; Meftah, M.B.; De Padova, D.D.; Serio, F.D.; Mossa, M. Monitoring Systems and Numerical Models to Study Coastal Sites. Sensors
**2019**, 19, 1552. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fleissner, F.; Gaugele, T.; Eberhard, P. Applications of the Discrete Element Method in Mechanical Engineering. Multibody Syst. Dyn.
**2007**, 18, 81–94. [Google Scholar] [CrossRef] - Rabczuk, T.; Gracie, R.; Song, J.-H.; Belytschko, T. Immersed Particle Method for Fluid-Structure Interaction: Particle method for fluid-structure interaction. Int. J. Numer. Meth. Eng.
**2010**, 81, 48–71. [Google Scholar] [CrossRef] - Liu, M.B.; Liu, G.R. Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments. Arch. Comput. Methods Eng.
**2010**, 17, 25–76. [Google Scholar] [CrossRef][Green Version] - Aubry, R.; Idelsohn, S.R.; Oñate, E. Particle Finite Element Method in Fluid-Mechanics Including Thermal Convection-Diffusion. Comput. Struct.
**2005**, 83, 1459–1475. [Google Scholar] [CrossRef] - Oñate, E.; Idelsohn, S.R.; Celigueta, M.A.; Rossi, R. Advances in the Particle Finite Element Method for the Analysis of Fluid–Multibody Interaction and Bed Erosion in Free Surface Flows. Comput. Methods Appl. Mech. Eng.
**2008**, 197, 1777–1800. [Google Scholar] [CrossRef] - Dalrymple, R.A.; Rogers, B.D. Numerical Modeling of Water Waves with the SPH Method. Coast. Eng.
**2006**, 53, 141–147. [Google Scholar] [CrossRef] - Makris, C.V.; Memos, C.D.; Krestenitis, Y.N. Numerical Modeling of Surf Zone Dynamics under Weakly Plunging Breakers with SPH Method. Ocean Model.
**2016**, 98, 12–35. [Google Scholar] [CrossRef] - De Padova, D.; Dalrymple, R.A.; Mossa, M. Analysis of the Artificial Viscosity in the Smoothed Particle Hydrodynamics Modelling of Regular Waves. J. Hydraul. Res.
**2014**, 52, 836–848. [Google Scholar] [CrossRef] - De Padova, D.; Brocchini, M.; Buriani, F.; Corvaro, S.; De Serio, F.; Mossa, M.; Sibilla, S. Experimental and Numerical Investigation of Pre-Breaking and Breaking Vorticity within a Plunging Breaker. Water
**2018**, 10, 387. [Google Scholar] [CrossRef][Green Version] - Canelas, R.; Ferreira, R.M.L.; Domínguez, J.M.; Crespo, A.J.C. Modelling of Wave Impacts on 886 Harbour Structures and Objects with SPH and DEM. In Proceedings of the 9th SPHERIC 887 International Workshop, CNAM, Paris, France, 3–5 June 2014. [Google Scholar]
- Mokos, A.; Rogers, B.D.; Stansby, P.K.; Domínguez, J.M. Multi-Phase SPH Modelling of Violent Hydrodynamics on GPUs. Comput. Phys. Commun.
**2015**, 196, 304–316. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M. Multi-Phase Simulation of Infected Respiratory Cloud Transmission in Air. AIP Adv.
**2021**, 11, 035035. [Google Scholar] [CrossRef] - Manenti, S.; Sibilla, S.; Gallati, M.; Agate, G.; Guandalini, R. SPH Simulation of Sediment Flushing Induced by a Rapid Water Flow. J. Hydraul. Eng.
**2012**, 138, 272–284. [Google Scholar] [CrossRef] - Ulrich, C.; Leonardi, M.; Rung, T. Multi-Physics SPH Simulation of Complex Marine-Engineering Hydrodynamic Problems. Ocean Eng.
**2013**, 64, 109–121. [Google Scholar] [CrossRef] - Fourtakas, G.; Rogers, B.D. Modelling Multi-Phase Liquid-Sediment Scour and Resuspension Induced by Rapid Flows Using Smoothed Particle Hydrodynamics (SPH) Accelerated with a Graphics Processing Unit (GPU). Adv. Water Resour.
**2016**, 92, 186–199. [Google Scholar] [CrossRef] - Hwang, S.-C.; Khayyer, A.; Gotoh, H.; Park, J.-C. Development of a Fully Lagrangian MPS-Based Coupled Method for Simulation of Fluid–Structure Interaction Problems. J. Fluids Struct.
**2014**, 50, 497–511. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M.; Sibilla, S. SPH Numerical Investigation of the Velocity Field and Vorticity Generation within a Hydrofoil-Induced Spilling Breaker. Environ. Fluid Mech.
**2016**, 16, 267–287. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M. Modelling Fluid–Structure Interactions: A Survey of Methods and Experimental Verification. Proc. Inst. Civ. Eng.-Eng. Comput. Mech.
**2020**, 173, 159–172. [Google Scholar] [CrossRef] - Espa, P.; Sibilla, S.; Gallati, M. SPH Simulations of a Vertical 2-D Liquid Jet Introduced from the Bottom of a Free Surface Rectangular Tank. Adv. Appl. Fluid Mech.
**2008**. undefined. [Google Scholar] - De Padova, D.; Mossa, M.; Sibilla, S. Characteristics of Nonbuoyant Jets in a Wave Environment Investigated Numerically by SPH. Environ. Fluid Mech.
**2020**, 20, 189–202. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M.; Sibilla, S. Numerical Investigation of the Behaviour of Jets in a Wave Environment. J. Hydraul. Res.
**2020**, 58, 618–627. [Google Scholar] [CrossRef] - Barile, S.; De Padova, D.; Mossa, M.; Sibilla, S. Theoretical Analysis and Numerical Simulations of Turbulent Jets in a Wave Environment. Phys. Fluids
**2020**, 32, 035105. [Google Scholar] [CrossRef] - López, D.; Marivela, R.; Garrote, L. Smoothed Particle Hydrodynamics Model Applied to Hydraulic Structures: A Hydraulic Jump Test Case. J. Hydraul. Res.
**2010**, 48, 142–158. [Google Scholar] [CrossRef] - Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D Open-Channel Flows through an SPH Model. Eur. J. Mech.-B/Fluids
**2012**, 34, 35–46. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M.; Sibilla, S.; Torti, E. 3D SPH Modelling of Hydraulic Jump in a Very Large Channel. J. Hydraul. Res.
**2013**, 51, 158–173. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M.; Sibilla, S. SPH Modelling of Hydraulic Jump Oscillations at an Abrupt Drop. Water
**2017**, 9, 790. [Google Scholar] [CrossRef][Green Version] - De Padova, D.; Mossa, M.; Sibilla, S. SPH Numerical Investigation of the Characteristics of an Oscillating Hydraulic Jump at an Abrupt Drop. J. Hydrodyn.
**2018**, 30, 106–113. [Google Scholar] [CrossRef] - De Padova, D.; Mossa, M.; Sibilla, S. SPH Numerical Investigation of Characteristics of Hydraulic Jumps. Environ. Fluid Mech.
**2018**, 18, 849–870. [Google Scholar] [CrossRef] - Jonsson, P.; Andreasson, P.; Hellström, J.G.I.; Jonsén, P.; Staffan Lundström, T. Smoothed Particle Hydrodynamic Simulation of Hydraulic Jump Using Periodic Open Boundaries. Appl. Math. Model.
**2016**, 40, 8391–8405. [Google Scholar] [CrossRef] - Canelas, R.B.; Crespo, A.J.C.; Domínguez, J.M.; Ferreira, R.M.L.; Gómez-Gesteira, M. SPH–DCDEM Model for Arbitrary Geometries in Free Surface Solid–Fluid Flows. Comput. Phys. Commun.
**2016**, 202, 131–140. [Google Scholar] [CrossRef] - Verbrugghe, T.; Stratigaki, V.; Altomare, C.; Domínguez, J.; Troch, P.; Kortenhaus, A. Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions. Energies
**2019**, 12, 697. [Google Scholar] [CrossRef][Green Version] - Rodi, W. Turbulence Models and Their Application in Hydraulics: A State-of-the-Art Review, 3rd ed.; IAHR Monograph Series; Balkema: Rotterdam, The Netherland, 1993; ISBN 9789054101505. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng.
**1974**, 3, 269–289. [Google Scholar] [CrossRef] - Shao, S. Incompressible SPH Simulation of Wave Breaking and Overtopping with Turbulence Modelling. Int. J. Numer. Meth. Fluids
**2006**, 50, 597–621. [Google Scholar] [CrossRef] - Shao, S. Simulation of Breaking Wave by SPH Method Coupled with k-∈ Model. J. Hydraul. Res.
**2006**, 44, 338–349. [Google Scholar] [CrossRef] - De Padova, D.; Ben Meftah, M.; De Serio, F.; Mossa, M.; Sibilla, S. Characteristics of Breaking Vorticity in Spilling and Plunging Waves Investigated Numerically by SPH. Environ. Fluid Mech.
**2020**, 20, 233–260. [Google Scholar] [CrossRef] - Moin, P.; Mahesh, K. Direct numerical simulation: A Tool in Turbulence Research. Annu. Rev. Fluid Mech.
**1998**, 30, 539–578. [Google Scholar] [CrossRef][Green Version] - Lucy, L.B. A Numerical Approach to the Testing of the Fission Hypothesis. Astron. J.
**1977**, 82, 1013. [Google Scholar] [CrossRef] - Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc.
**1977**, 181, 375–389. [Google Scholar] [CrossRef] - Monaghan, J.J. Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astrophys.
**1992**, 30, 543–574. [Google Scholar] [CrossRef] - Liu, G.-R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003; ISBN 9789812564405. [Google Scholar]
- Liu, G.R. Mesh Free Methods: Moving beyond the Finite Element Method; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780849312380. [Google Scholar]
- Monaghan, J.J.; Lattanzio, J.C. A Refined Particle Method for Astrophysical Problems. Astron. Astrophys.
**1985**, 149, 135–143. [Google Scholar] - Gotoh, H.; Shibahara, T.; Sakai, T. Sub-Particle-Scale Turbulence Model for the MPS Method—Lagrangian Flow Model for Hydraulic Engineering. Adv. Methods Comput. Fluid Dyn.
**2001**, 9, 339–347. [Google Scholar] - Monaghan, J.J. Simulating Free Surface Flows with SPH. J. Comput. Phys.
**1994**, 110, 399–406. [Google Scholar] [CrossRef] - Gomez-Gesteira, M.; Rogers, B.D.; Dalrymple, R.A.; Crespo, A.J.C. State-of-the-Art of Classical SPH for Free-Surface Flows. J. Hydraul. Res.
**2010**, 48, 6–27. [Google Scholar] [CrossRef] - Crespo, A.J.; Gómez-Gesteira, M.; Dalrymple, R.A. Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. J. Waterw. Port Coast. Ocean Eng.
**2008**, 134, 313–320. [Google Scholar] [CrossRef] - Khayyer, A.; Gotoh, H. On Particle-Based Simulation of a Dam Break over a Wet Bed. J. Hydraul. Res.
**2010**, 48, 238–249. [Google Scholar] [CrossRef] - Altomare, C.; Domínguez, J.M.; Crespo, A.J.C.; González-Cao, J.; Suzuki, T.; Gómez-Gesteira, M.; Troch, P. Long-Crested Wave Generation and Absorption for SPH-Based DualSPHysics Model. Coast. Eng.
**2017**, 127, 37–54. [Google Scholar] [CrossRef] - Lo, E.Y.M.; Shao, S. Simulation of Near-Shore Solitary Wave Mechanics by an Incompressible SPH Method. Appl. Ocean Res.
**2002**, 24, 275–286. [Google Scholar] [CrossRef] - Shao, S.; Lo, E.Y.M. Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows with a Free Surface. Adv. Water Resour.
**2003**, 26, 787–800. [Google Scholar] [CrossRef] - Shipilova, O.; Bockmann, A.; Skeie, G.; Bergan, P. Assessment of Incompressible and Weakly Compressible SPH for Marine Applications. In Proceedings of the International Conference 4th Spheric Workshop, Nantes, France, 27–29 May 2009; pp. 273–277. [Google Scholar]
- Lee, E.-S.; Moulinec, C.; Xu, R.; Violeau, D.; Laurence, D.; Stansby, P. Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method. J. Comput. Phys.
**2008**, 227, 8417–8436. [Google Scholar] [CrossRef] - Fulk, D.A.; Quinn, D.W. An Analysis of 1-D Smoothed Particle Hydrodynamics Kernels. J. Comput. Phys.
**1996**, 126, 165–180. [Google Scholar] [CrossRef] - Domínguez, J.M.; Fourtakas, G.; Altomare, C.; Canelas, R.B.; Tafuni, A.; García-Feal, O.; Martínez-Estévez, I.; Mokos, A.; Vacondio, R.; Crespo, A.J.C.; et al. DualSPHysics: From Fluid Dynamics to Multiphysics Problems. Comp. Part. Mech.
**2021**. [Google Scholar] [CrossRef] - Antuono, M.; Colagrossi, A.; Marrone, S. Numerical Diffusive Terms in Weakly-Compressible SPH Schemes. Comput. Phys. Commun.
**2012**, 183, 2570–2580. [Google Scholar] [CrossRef] - Molteni, D.; Colagrossi, A. A Simple Procedure to Improve the Pressure Evaluation in Hydrodynamic Context Using the SPH. Comput. Phys. Commun.
**2009**, 180, 861–872. [Google Scholar] [CrossRef] - Casulli, V.; Stelling, G.S. Numerical Simulation of 3D Quasi-Hydrostatic, Free-Surface Flows. J. Hydraul. Eng.
**1998**, 124, 678–686. [Google Scholar] [CrossRef] - Stansby, P.K.; Zhou, J.G. Shallow-Water Flow Solver with Non-Hydrostatic Pressure: 2D Vertical Plane Problems. Int. J. Numer. Methods Fluids
**1998**, 28, 541–563. [Google Scholar] [CrossRef] - Stelling, G.; Zijlema, M. An Accurate and Efficient Finite-Difference Algorithm for Non-Hydrostatic Free-Surface Flow with Application to Wave Propagation. Int. J. Numer. Meth. Fluids
**2003**, 43, 1–23. [Google Scholar] [CrossRef] - Zijlema, M.; Stelling, G.S. Further Experiences with Computing Non-Hydrostatic Free-Surface Flows Involving Water Waves. Int. J. Numer. Meth. Fluids
**2005**, 48, 169–197. [Google Scholar] [CrossRef] - Zijlema, M.; Stelling, G.S. Efficient Computation of Surf Zone Waves Using the Nonlinear Shallow Water Equations with Non-Hydrostatic Pressure. Coast. Eng.
**2008**, 55, 780–790. [Google Scholar] [CrossRef] - Zijlema, M.; Stelling, G.; Smit, P. SWASH: An Operational Public Domain Code for Simulating Wave Fields and Rapidly Varied Flows in Coastal Waters. Coast. Eng.
**2011**, 58, 992–1012. [Google Scholar] [CrossRef] - Stelling, G.S.; Busnelli, M.M. Numerical Simulation of the Vertical Structure of Discontinuous Flows. Int. J. Numer. Meth. Fluids
**2001**, 37, 23–43. [Google Scholar] [CrossRef] - Bai, Y.; Cheung, K.F. Dispersion and Nonlinearity of Multi-Layer Non-Hydrostatic Free-Surface Flow. J. Fluid Mech.
**2013**, 726, 226–260. [Google Scholar] [CrossRef] - Harten, A.; Lax, P.D.; van Leer, B. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Rev.
**1983**, 25, 35–61. [Google Scholar] [CrossRef] - De Serio, F.; Mossa, M. Experimental Study on the Hydrodynamics of Regular Breaking Waves. Coast. Eng.
**2006**, 53, 99–113. [Google Scholar] [CrossRef] - Roeber, V. Boussinesq-Type Model for Nearshore Wave Processes in Fringing Reef Environment. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 2010. [Google Scholar]
- Roeber, V.; Cheung, K.F.; Kobayashi, M.H. Shock-Capturing Boussinesq-Type Model for Nearshore Wave Processes. Coast. Eng.
**2010**, 57, 407–423. [Google Scholar] [CrossRef] - Titov, V.V.; Synolakis, C.E. Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2. J. Waterw. Port Coast. Ocean Eng.
**1995**, 121, 308–316. [Google Scholar] [CrossRef] - Domínguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M. Optimization Strategies for CPU and GPU Implementations of a Smoothed Particle Hydrodynamics Method. Comput. Phys. Commun.
**2013**, 184, 617–627. [Google Scholar] [CrossRef] - Crespo, A.J.C.; Domínguez, J.M.; Rogers, B.D.; Gómez-Gesteira, M.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; García-Feal, O. DualSPHysics: Open-Source Parallel CFD Solver Based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Commun.
**2015**, 187, 204–216. [Google Scholar] [CrossRef] - Crespo, A.J.C.; Gómez-Gesteira, M.; Dalrymple, R.A. 3D SPH Simulation of Large Waves Mitigation with a Dike. J. Hydraul. Res.
**2007**, 45, 631–642. [Google Scholar] [CrossRef] - Smit, P.; Zijlema, M.; Stelling, G. Depth-Induced Wave Breaking in a Non-Hydrostatic, near-Shore Wave Model. Coast. Eng.
**2013**, 76, 1–16. [Google Scholar] [CrossRef] - Fang, K.; Zou, Z.; Dong, P.; Liu, Z.; Gui, Q.; Yin, J. An Efficient Shock Capturing Algorithm to the Extended Boussinesq Wave Equations. Appl. Ocean Res.
**2013**, 43, 11–20. [Google Scholar] [CrossRef] - Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A High-Order Adaptive Time-Stepping TVD Solver for Boussinesq Modeling of Breaking Waves and Coastal Inundation. Ocean Model.
**2012**, 43–44, 36–51. [Google Scholar] [CrossRef] - Tonelli, M.; Petti, M. Hybrid Finite Volume—Finite Difference Scheme for 2DH Improved Boussinesq Equations. Coast. Eng.
**2009**, 56, 609–620. [Google Scholar] [CrossRef] - Bacigaluppi, P.; Ricchiuto, M.; Bonneton, P. Implementation and Evaluation of Breaking Detection Criteria for a Hybrid Boussinesq Model. Water Waves
**2019**, 2(2), 207–241. [Google Scholar] [CrossRef][Green Version] - Kazolea, M.; Delis, A.I.; Synolakis, C.E. Numerical Treatment of Wave Breaking on Unstructured Finite Volume Approximations for Extended Boussinesq-Type Equations. J. Comput. Phys.
**2014**, 271, 281–305. [Google Scholar] [CrossRef] - Christensen, E.D.; Walstra, D.-J.; Emerat, N. Vertical Variation of the Flow across the Surf Zone. Coast. Eng.
**2002**, 45, 169–198. [Google Scholar] [CrossRef] - Wilmott, C.J. On the validation of models. Phys. Geogr.
**1981**, 2, 184–194. [Google Scholar] [CrossRef] - Kennedy, A.B.; Chen, Q.; Kirby, J.T.; Dalrymple, R.A. Boussinesq Modeling of Wave Transformation, Breaking, and Runup. I: 1D. J. Waterw. Port Coast. Ocean Eng.
**2000**, 126, 39–47. [Google Scholar] [CrossRef][Green Version] - Tissier, M.; Bonneton, P.; Marche, F.; Chazel, F.; Lannes, D. A New Approach to Handle Wave Breaking in Fully Non-Linear Boussinesq Models. Coast. Eng.
**2012**, 67, 54–66. [Google Scholar] [CrossRef] - Kazolea, M.; Ricchiuto, M. On Wave Breaking for Boussinesq-Type Models. Ocean Model.
**2018**, 123, 16–39. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Sketch of the channel with indications of the investigated sections used to calibrate the numerical model.

**Figure 4.**DualSPHysics model: Snapshots of free surface and vorticity field for (

**a**) spilling/plunging breaking wave (T1) and (

**b**) plunging breaking wave (T2).

**Figure 5.**Computed and measured surface elevation for (

**a**) spilling/plunging breaking wave (T1) and (

**b**) plunging breaking wave (T2).

**Figure 6.**Comparison of experimental and numerical skewness of surface wave elevation for: (

**a**) spilling/plunging breaking wave (T1) and (

**b**) plunging breaking wave (T2).

**Figure 7.**Comparison of experimental and numerical surface profiles of a solitary wave over a fringing reef (T3).

**Figure 8.**Comparison of experimental and numerical surface profiles of a solitary wave run-up on a plane beach (T4).

Test | H_{0} (cm) | T (s) | L_{0} (m) | d (m) | ξ_{0} | Breaking Type |
---|---|---|---|---|---|---|

T1 | 11 | 2 | 4.62 | 0.70 | 0.37 | Spilling/plunging |

T2 | 6.5 | 4 | 10.12 | 0.70 | 0.74 | plunging |

Test | Time Simulation (s) | Δx(m) | h/Δx | N_{particles} (−) |
---|---|---|---|---|

SPH_T1 | 100 | 0.01 | 1.5 | 62,892 |

SPH_T2 | 100 | 0.01 | 1.5 | 62.892 |

SPH_T3 | 13 | 0.02 | 1.5 | 50,242 |

SPH_T4 | 45 | 0.025 | 1.5 | 369,885 |

TEST | Time Simulation (s) | Δx, Δy (m) | Wave Breaking Criterion | N_{nodes}(−) |
---|---|---|---|---|

D/C Galerkin_T1 | 60 | 0.04 | $\frac{\frac{\partial \xi}{\partial t}}{\sqrt{g\left|h\right|}}>0.2$ | 5607 |

D/C Galerkin_T2 | 60 | 0.04 | $\frac{\frac{\partial \xi}{\partial t}}{\sqrt{g\left|h\right|}}>0.3$ | 5607 |

D/C Galerkin_T3 | 25 | 0.05 | $\frac{\xi}{h}>0.8$ | 4505 |

D/C Galerkin_T4 | 40 | 0.4 | $\frac{\xi}{h}>0.8$ | 3857 |

I_{W} | |||
---|---|---|---|

Sect. | 49 | 48 | 45 |

SPH_T1 | 0.92 | 0.90 | 0.89 |

D/C Galerkin_T1 | 0.82 | 0.78 | 0.72 |

SPH_T2 | 0.95 | 0.89 | 0.90 |

D/C Galerkin_T2 | 0.91 | 0.85 | 0.75 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De Padova, D.; Calvo, L.; Carbone, P.M.; Maraglino, D.; Mossa, M. Comparison between the Lagrangian and Eulerian Approach for Simulating Regular and Solitary Waves Propagation, Breaking and Run-Up. *Appl. Sci.* **2021**, *11*, 9421.
https://doi.org/10.3390/app11209421

**AMA Style**

De Padova D, Calvo L, Carbone PM, Maraglino D, Mossa M. Comparison between the Lagrangian and Eulerian Approach for Simulating Regular and Solitary Waves Propagation, Breaking and Run-Up. *Applied Sciences*. 2021; 11(20):9421.
https://doi.org/10.3390/app11209421

**Chicago/Turabian Style**

De Padova, Diana, Lucas Calvo, Paolo Michele Carbone, Domenico Maraglino, and Michele Mossa. 2021. "Comparison between the Lagrangian and Eulerian Approach for Simulating Regular and Solitary Waves Propagation, Breaking and Run-Up" *Applied Sciences* 11, no. 20: 9421.
https://doi.org/10.3390/app11209421