ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
dpf | Days postfertilization |
GFP | Green-Fluorescent Protein |
GMV | GFP medium value |
hpf | Hours postfecundation |
hpi | Hours postinjection |
nGFP | Number of GFP pixels |
References
- Ali, S.; Champagne, D.; Spaink, H.; Richardson, M. Zebrafish embryos and larvae: A new generation of disease models and drug screens. Birth Defects Res. Part C Embryo Today 2011, 93, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Drabsch, Y.; He, S.; Zhang, L.; Snaar-Jagalska, B.; Ten Dijke, P. Transforming growth factor-β signaling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res. 2013, 15, R106. [Google Scholar] [CrossRef]
- Mikut, R.; Dickmeis, T.; Driever, W.; Geurts, P.; Hamprecht, F.; Kausler, B.; Ledesma-Carbayo, M.; Marée, R.; Mikula, K.; Pantazis, P.; et al. Automated Processing of Zebrafish Imaging Data: A Survey. Zebrafish 2013, 10, 401–421. [Google Scholar] [CrossRef]
- Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91, 279–288. [Google Scholar] [CrossRef]
- Mione, M.; Trede, N. The zebrafish as a model for cancer. Dis. Model. Mech. 2010, 3, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Flinn, L.; Bretaud, S.; Lo, C.; Ingham, P.; Bandmann, O. Zebrafish as a new animal model for movement disorders. J. Neurochem. 2008, 106, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Bentley, V.; Veinotte, C.; Corkery, D.; Pinder, J.; LeBlanc, M.; Bedard, K.; Weng, A.; Berman, J.; Dellaire, G. Focused chemical genomics using zebrafish xenotransplantation as a preclinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 2015, 100, 70–76. [Google Scholar] [CrossRef]
- Jung, D.W.; Oh, E.S.; Park, S.H.; Chang, Y.T.; Kim, C.H.; Choi, S.Y.; Williams, D. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol. Biosyst. 2012, 8, 1930–1939. [Google Scholar] [CrossRef]
- Konantz, M.; Balci, T.; Hartwig, U.; Dellaire, G.; André, M.; Berman, J.; Lengerke, C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. N. Y. Acad. Sci. 2012, 1266, 124–137. [Google Scholar] [CrossRef]
- Veinotte, C.; Dellaire, G.; Berman, J. Hooking the big one: The potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic area. Dis. Model. Mech. 2014, 7, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Annila, T.; Lihavainen, E.; Marques, I.; Williams, D.; Yli-Harja, O.; Ribeiro, A. ZebIAT, an image analysis tool for registering zebrafish embryos and quantifying cancer metastasis. BMC Bioinform. 2013, 14, S5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Teng, Y.; Xie, X.; Walker, S.; White, D.; Mumm, J.; Cowell, J. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer 2013, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Ghotra, V.; He, S.; de Bont, H.; van der Ent, W.; Spaink, H.; van de Water, B.; Snaar-Jagalska, B.; Danen, E. Automated whole animal bio-imaging assay for human cancer dissemination. PLoS ONE 2012, 7, e31281. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Sainz, P.; Guerra-Varela, J.; Carreira, M.J.; Mariscal, J.; Roel, M.; Rubiolo, J.; Sciara, A.; Abal, M.; Botana, L.; López, R.; et al. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFTool. BMC Cancer 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Varela, J.; Terriente, J.; Mariscal, J.; Cabezas-Sainz, P.; Calzolari, S.; Dyballa, S.; Abal, M.; López, R.; Sánchez, L. Assessing proliferation and metastasis of human cancer cells trhough 3D imaging. In Proceedings of the 7th Zebrafish Disease Models Conference, Madison, WI, USA, 28 June–1 July 2014. 100–P1. [Google Scholar]
- Kankaanpää, P.; Paavolainen, L.; Tiitta, S.; Karjalainen, M.; Päivärinne, J.; Nieminen, J.; Marjomäki, V.; Heino, J.; White, D. BioImageXD: An open, general-purpose and high-throughput image-processing platform. Nat. Methods 2012, 9, 683–689. [Google Scholar] [CrossRef] [PubMed]
Zebrafish # | Threshold | PI | ||||
---|---|---|---|---|---|---|
#8 | 20 | 3144 | 92.08 | 5349 | 63.07 | 1.16 |
#11 | 40 | 4279 | 97.25 | 6133 | 102.88 | 1.52 |
#14 | 35 | 1991 | 82.94 | 5106 | 89.72 | 2.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreira, M.J.; Vila-Blanco, N.; Cabezas-Sainz, P.; Sánchez, L. ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish. Appl. Sci. 2021, 11, 7721. https://doi.org/10.3390/app11167721
Carreira MJ, Vila-Blanco N, Cabezas-Sainz P, Sánchez L. ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish. Applied Sciences. 2021; 11(16):7721. https://doi.org/10.3390/app11167721
Chicago/Turabian StyleCarreira, María J., Nicolás Vila-Blanco, Pablo Cabezas-Sainz, and Laura Sánchez. 2021. "ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish" Applied Sciences 11, no. 16: 7721. https://doi.org/10.3390/app11167721
APA StyleCarreira, M. J., Vila-Blanco, N., Cabezas-Sainz, P., & Sánchez, L. (2021). ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish. Applied Sciences, 11(16), 7721. https://doi.org/10.3390/app11167721