Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Chemicals
2.3. Equipment
2.4. Ultrasonic-Assisted Extraction of the Solid By-Products
2.5. Analytical Procedures
2.5.1. Determination of the Radical Scavenging Activity (RSA)
2.5.2. Determination of Total Phenolic Content (TPC)
2.5.3. Determination of Total Flavonoid Content (TFC)
2.5.4. HPLC Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Overall Differences between Solid Waste Hydroalcoholic Extracts (TWE and FEW) Obtained by PUAE and Distillation Wastewaters (LEACH)
3.2. Differences between Solid Waste Hydroalcoholic Extracts (TWE and FEW) and Distillation Wastewaters (LEACH) in the Relative Composition of Single Phenolic and Flavonoid Compounds
3.3. Future Research Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesage-Meessen, L.; Bou, M.; Ginies, C.; Chevret, D.; Navarro, D.; Drula, E.; Bonnin, E.; del Río, J.C.; Odinot, E.; Bisotto, A.; et al. Lavender- and lavandin-distilled straws: An untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes Biotechnol. Biofuels 2018, 11, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnover Interreg Alcotra Project 2017–2020. Available online: http://www.interreg-finnover.com/ (accessed on 29 March 2021).
- Kıvrak, Ş. Essential oil composition and antioxidant activities of eight cultivars of Lavender and Lavandin from western Anatolia. Ind. Crop. Prod. 2018, 117, 88–96. [Google Scholar] [CrossRef]
- Mohammadpourhodki, R.; Sadeghnezhad, H.; Ebrahimi, H.; Basirinezhad, M.H.; Maleki, M.; Bossola, M. The Effect of Aromatherapy Massage with Lavender and Citrus Aurantium Essential Oil on Quality of Life of Patients on Chronic Hemodialysis: A Parallel Randomized Clinical Trial Study. J. Pain Symptom Manag. 2021, 61, 456–463. [Google Scholar] [CrossRef]
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula Angustifolia L). A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Tomi, K.; Kitao, M.; Murakami, H.; Matsumura, Y.; Hayashi, T. Classification of lavender essential oils: Sedative effects of Lavandulaoils. J. Essent. Oil Res. 2018, 30, 56–68. [Google Scholar] [CrossRef]
- Da Silva, G.L.; Luft, C.; Lunardelli, A.; Amaral, R.H.; Melo, D.A.D.S.; Donadio, M.; Nunes, F.B.; De Azambuja, M.S.; Santana, J.C.; Moraes, C.M.; et al. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. Anais Acad. Bras. Ciências 2015, 87, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Al-Sayari, A.; Ghazwani, M.; Alhamhoom, Y.; Almaghaslah, D.; Louis, J.V.; Gurusamy, N. The antidepressant-like effect of almond oil: An additive effect with lavender oil. Biomed. Res. 2018, 29, 3402–3407. [Google Scholar] [CrossRef] [Green Version]
- Hajiali, H.; Summa, M.; Russo, D.; Armirotti, A.; Brunetti, V.; Bertorelli, R.; Athanassiou, A.; Mele, E. Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J. Mater. Chem. B 2016, 4, 1686–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.H.; Seol, G.H. Lavandula Angustifolia Mill. Oil and Its Active Constituent Linalyl Acetate Alleviate Pain and Urinary Residual Sense after Colorectal Cancer Surgery: A Randomised Controlled Trial. Evid.-Based Complement. Altern. Med. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bikmoradi, A.; Seifi, Z.; Poorolajal, J.; Araghchian, M.; Safiaryan, R.; Oshvandi, K. Effect of inhalation aromatherapy with lavender essential oil on stress and vital signs in patients undergoing coronary artery bypass surgery: A single-blinded randomized clinical trial. Complement. Ther. Med. 2015, 23, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Decorti, D.; Kikic, I. Flavour compounds of Lavandula Angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 2009, 112, 1072–1078. [Google Scholar] [CrossRef]
- Deng, X.; Chen, J.; Chen, W. Hydrogel particles as a controlled release delivery system for lavender essential oil using pH triggers. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125134. [Google Scholar] [CrossRef]
- Perović, A.; Stanković, M.Z.; Veljković, V.B.; Kostić, M.D.; Stamenković, O.S. A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers. Chin. J. Chem. Eng. 2021, 29, 126–130. [Google Scholar] [CrossRef]
- D’Amato, S.; Serio, A.; López, C.C.; Paparella, A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control. 2018, 86, 126–137. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Savva, A.G. Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 109–128. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Turrini, F.; Zunin, P.; Catena, S.; Villa, C.; Alfei, S.; Boggia, R. Traditional or hydro-diffusion and gravity microwave coupled with ultrasound as green technologies for the valorization of pomegranate external peels. Food Bioprod. Process. 2019, 117, 30–37. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed Ultrasound-Assisted Extraction as an Alternative Method to Conventional Maceration for the Extraction of the Polyphenolic Fraction of Ribes nigrum Buds: A New Category of Food Supplements Proposed by The FINNOVER Project. Foods 2019, 8, 466. [Google Scholar] [CrossRef] [Green Version]
- Turrini, F.; Donno, D.; Boggia, R.; Beccaro, G.L.; Zunin, P.; Leardi, R.; Pittaluga, A.M. An innovative green extraction and re-use strategy to valorize food supplement by-products: Castanea sativa bud preparations as case study. Food Res. Int. 2019, 115, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Boggia, R.; Donno, D.; Parodi, B.; Beccaro, G.L.; Baldassari, S.; Signorello, M.G.; Catena, S.; Alfei, S.; Zunin, P. From pomegranate marcs to a potential bioactive ingredient: A recycling proposal for pomegranate-squeezed marcs. Eur. Food Res. Technol. 2020, 246, 273–285. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Varjani, S.; Cho, S.-K.; Ghodake, G.S.; Kadam, A.; Mulla, I.S.; Bharagava, R.N.; Kim, D.-S.; Shin, H.S. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind. Crop. Prod. 2020, 150, 112425. [Google Scholar] [CrossRef]
- Turrini, F.; Boggia, R.; Leardi, R.; Borriello, M.; Zunin, P. Optimization of the Ultrasonic-Assisted Extraction of Phenolic Compounds from Oryza Sativa L. ‘Violet Nori’ and Determination of the Antioxidant Properties of its Caryopses and Leaves. Molecules 2018, 23, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boggia, R.; Turrini, F.; Villa, C.; LaCapra, C.; Zunin, P.; Parodi, B. Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Cangelosi, B.; Clematis, F.; Monroy, F.; Roversi, P.F.; Troiano, R.; Curir, P.; Lanzotti, V. Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the Red Palm Weevil Rhynchophorus ferrugineus Olivier. Phytochemistry 2015, 115, 216–221. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 10 May 2021).
- Śmigielski, K.B.; Prusinowska, R.; Krosowiak, K.; Sikora, M. Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula Angustifolia). J. Essent. Oil Res. 2013, 25, 291–299. [Google Scholar] [CrossRef]
- Moon, T.; Wilkinson, J.; Cavanagh, H. Antibacterial activity of essential oils, hydrosols and plant extracts from Australian grown Lavandula spp. Int. J. Aromather. 2006, 16, 9–14. [Google Scholar] [CrossRef]
- De Peredo, A.V.G.; Vázquez-Espinosa, M.; Espada-Bellido, E.; González, M.F.; Amores-Arrocha, A.; Palma, M.; Barbero, G.F.; Jiménez-Cantizano, A. Alternative Ultrasound-Assisted Method for the Extraction of the Bioactive Compounds Present in Myrtle (Myrtus Communis L.). Molecules 2019, 24, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Espinosa, M.; De Peredo, A.V.G.; González, M.F.; Carrera, C.; Palma, M.; Barbero, G.F.; Espada-Bellido, E. Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia Chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Espada-Bellido, E.; González, M.F.; Toledo-Domínguez, J.J.; Carrera, C.; Palma, M.; Barbero, G.F. Ultrasound-Assisted Extraction of Two Types of Antioxidant Compounds (TPC and TA) from Black Chokeberry (Aronia Melanocarpa L.): Optimization of the Individual and Simultaneous Extraction Methods. Agronomy 2019, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- González-De-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.Á.; Barbero, G.F.; Ayuso, J. Optimization of Analytical Ultrasound-Assisted Methods for the Extraction of Total Phenolic Compounds and Anthocyanins from Sloes (Prunus spinosa L.). Agronomy 2020, 10, 966. [Google Scholar] [CrossRef]
- Tung, Y.T.; Chang, W.C.; Chen, P.S.; Chang, T.C.; Chang, S.T. Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J. Sep. Sci. 2011, 34, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Donno, D.; Beccaro, G.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-Derivatives, a Novel Source of Polyphenols and How Different Extraction Processes Affect Their Composition. Foods 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Komaitis, M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics. J. Food Qual. 2006, 29, 567–582. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Dzięcioł, M. Comparison of phenolic acids and flavonoids contents in various cultivars and parts of common lavender (Lavandula Angustifolia) derived from Poland. Nat. Prod. Res. 2017, 31, 2575–2580. [Google Scholar] [CrossRef]
- Mammen, D.; Daniel, M. A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chem. 2012, 135, 1365–1368. [Google Scholar] [CrossRef]
- Torras-Claveria, L.; Jauregui, O.; Bastida, J.; Codina, C.; Viladomat, F. Antioxidant Activity and Phenolic Composition of Lavandin (Lavandula x Intermedia Emeric ex Loiseleur) Waste. J. Agric. Food Chem. 2007, 55, 8436–8443. [Google Scholar] [CrossRef]
- Upson, T. Phytochemistry flavonoids. In The Genus Lavandula; Upson, T., Andrews, S., Eds.; Timber Press: Portland, OR, USA, 2004; p. 442. [Google Scholar]
- Yadikar, N.; Bobakulov, K.; Li, G.; Aisa, H.A. Seven new phenolic compounds from Lavandula Angustifolia. Phytochem. Lett. 2018, 23, 149–154. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin, Germany, 1970; p. 354. [Google Scholar]
- Upson, T.M. Systematics of the Genus Lavandula L. (Lamiaceae). Ph.D. Thesis, University of Reading, Reading, UK, 1999. [Google Scholar]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.-C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef] [PubMed]
- Beruto, M.; Mela, L.; Boggia, R.; Cangelosi, B.; Turrini, F.; Curir, P.; Monroy, F. Novel bioproducts from lavander to be tested against Myzus Persicae Sulzer (Homoptera: Aphididae). In In Vitro Cellular & Developmental Biology–Plant; Springer: New York, NY, USA, 2018; Volume 54, p. 5117. [Google Scholar]
- Harborne, J.B.; Baxter, H.; Moss, G.P. Phytochemical Dictionary A Handbook of Bioactive Compounds from Plants, 2nd ed.; Taylor & Francis: London, UK, 1999; p. 976. [Google Scholar]
- McCarthy, B.C.; Magurran, A.E. Measuring Biological Diversity. J. Torrey Bot. Soc. 2004, 131, 277. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- Lis-Balchin, M. Lavender: The Genus Lavandula; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Abedi, F.; Razavi, B.M.; Hosseinzadeh, H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother. Res. 2019, 34, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Juurlink, B.H.; Azouz, H.J.; Aldalati, A.M.; AlTinawi, B.M.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Khadem, S.; Marles, R. Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies. Molecules 2010, 15, 7985–8005. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatol. Symp. Proc. 2008, 13, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Bonina, F. Flavonoids as potential protective agents against photo-oxidative skin damage. Int. J. Pharm. 1996, 145, 87–94. [Google Scholar] [CrossRef]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Zgórka, G.; Głowniak, K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomed. Anal. 2001, 26, 79–87. [Google Scholar] [CrossRef]
Ultrasonic-Assisted Extraction | Conditions |
---|---|
Pulsed modality: duty cycle per second (DC) | 50% |
Extraction solvent | Ethanol:Water (70:30 w/w) |
Dry waste/solvent ratio | 1:40 |
Amplitude level | 40% |
Extraction time | 10 min |
Extraction temperature | <60 °C |
Sample | |||||
---|---|---|---|---|---|
Sample Code | Description | TEAC (mg TE/g of Dry Waste) | AEAC (mg AAE/g of Dry Waste) | TPC (mg GA/g of Dry Waste) | TFC (mg QE/g of Dry Waste) |
Total Waste Extract—TWE | Hydroalcoholic Extract Obtained by PUAE from the Solid Waste Remaining After the Distillation of LEO | 110.49 ± 0.34 a | 57.52 ± 0.18 a | 40.15 ± 0.04 a | 4.72 ± 3.56 a |
Flower Waste Extract—FWE | Hydroalcoholic Extract Obtained by PUAE From the Only-Flower Residues Remaining After the Distillation of LEO | 107.29 ± 0.05 a | 55.85 ± 0.03 a | 37.68 ± 0.06 a | 4.60 ± 1.53 a |
LEACH | Distillation Wastewater: Leachate | 3.40 ± 0.00 b | 1.77 ± 0.00 b | 0.75 ± 0.00 b | 0.02 ± 0.01 b |
No. | Compound | Relative Amount (%) in LEACH | Relative Amount (%) in TWE | Relative Amount (%) in FWE | F | p |
---|---|---|---|---|---|---|
1 | gallic acid 1 | 0.85 ± 0.01 a | 3.47 ± 0.87 b | 1.88 ± 0.04 ab | 13.11 | 0.033 |
2 | ethyl gallate 1 | 0.82 ± 0.01 a | 1.45 ± 0.92 a | n.d. (a) | 3.58 | 0.161 |
3 | unidentified phenolic | 2.03 ± 0.02 a | 1.05 ± 0.46 b | 0.22 ± 0.12 b | 21.05 | 0.017 |
4 | caffeic acid 2 | 2.60 ± 0.03 a | 3.60 ± 1.22 a | 3.71 ± 0.12 a | 1.45 | 0.363 |
5 | chlorogenic acid 2 | 0.06 ± 0.08 a | 12.72 ± 0.13 b | 4.51 ± 0.14 c | 5374 | <0.001 |
6 | gentisic acid 1 | 6.78 ± 0.05 a | 43.84 ± 6.18 b | 10.23 ± 6.55 a | 29.78 | 0.011 |
7 | p-coumaric acid 2 | n.d. (a) | 6.54 ± 0.41 b | 0.36 ± 0.20 a | 368.8 | <0.001 |
8 | unidentified phenolic | 4.45 ± 0.02 a | 0.31 ± 0.10 b | 0.29 ± 0.40 b | 199.7 | <0.001 |
9 | unidentified phenolic | 1.16 ± 0.01 a | 3.29 ± 0.46 b | 7.70 ± 0.09 c | 289.8 | <0.001 |
10 | unidentified phenolic | 1.15 ± 0.01 a | 1.15 ± 0.02 a | 5.37 ± 0.35 b | 276.1 | <0.001 |
11 | unidentified flavonoid | 4.78 ± 0.04 a | 1.42 ± 0.24 b | 6.42 ± 0.08 c | 599.3 | <0.001 |
12 | syringic acid 1 | 9.93 ± 0.01 a | n.d. (b) | 11.09 ± 0.79 a | 343.5 | <0.001 |
13 | rutin 3 | 21.33 ± 0.08 a | n.d. (b) | 3.61 ± 0.56 c | 2373 | <0.001 |
14 | unidentified flavonoid | 13.87 ± 0.13 a | n.d. (b) | 5.83 ± 0.25 c | 3549 | <0.001 |
15 | unidentified flavonoid | 1.39 ± 0.02 a | 5.46 ± 1.57 ab | 7.14 ± 0.52 b | 18.33 | 0.021 |
16 | unidentified flavonoid | 0.64 ± 0.01 ab | 0.13 ± 0.17 a | 1.47 ± 0.46 b | 10.83 | 0.043 |
17 | quercetin-3-O-glucopyranoside 3 | 8.14 ± 0.01 a | 0.66 ± 0.14 b | 7.60 ± 0.83 a | 142 | 0.001 |
18 | isorhamnetin-3-O-rutinoside 3 | 4.32 ± 0.08 a | 0.78 ± 0.64 b | 1.92 ± 0.66 b | 22.14 | 0.016 |
19 | isorhamnetin-3-O-glucoside 3 | 1.89 ± 0.18 a | 1.28 ± 0.35 a | 1.60 ± 0.31 a | 2.087 | 0.271 |
20 | luteolin 4 | 0.35 ± 0.02 a | 1.09 ± 0.16 a | 2.86 ± 0.27 b | 93.05 | 0.002 |
21 | unidentified flavonoid | 0.70 ± 0.01 a | 2.08 ± 0.41 b | 0.79 ± 0.18 a | 16.97 | 0.023 |
22 | unidentified flavonoid | 0.60 ± 0.02 a | 5.77 ± 0.58 b | 5.78 ± 0.24 b | 131.7 | 0.001 |
23 | unidentified flavonoid | 2.77 ± 0.02 a | 1.17 ± 0.21 b | 4.33 ± 0.26 c | 129.3 | 0.001 |
24 | unidentified flavonoid | 3.17 ± 0.07 a | 0.50 ± 0.25 b | 0.31 ± 0.09 b | 198.3 | <0.001 |
25 | unidentified flavonoid | 3.99 ± 0.15 a | 0.39 ± 0.38 b | 0.53 ± 0.04 b | 143.4 | 0.001 |
26 | unidentified flavonoid | 0.90 ± 0.06 a | 0.04 ± 0.06 b | 0.95 ± 0.04 a | 188.1 | <0.001 |
27 | unidentified flavonoid | n.d. (a) | 0.17 ± 0.07 a | 0.84 ± 0.07 b | 119.6 | 0.001 |
28 | apigenin 4 | 0.08 ± 0.01 a | 0.28 ± 0.03 b | 0.33 ± 0.01 b | 108.7 | 0.001 |
29 | unidentified flavonoid | 0.30 ± 0.03 a | 0.17 ± 0.06 ab | n.d. (b) | 30.58 | 0.010 |
30 | unidentified flavonoid | 0.80 ± 0.06 a | 0.77 ± 0.06 a | 1.45 ± 0.07 b | 68.27 | 0.003 |
31 | unidentified flavonoid | n.d. (a) | 0.13 ± 0.02 ab | 0.35 ± 0.13 b | 10.11 | 0.047 |
32 | unidentified flavonoid | 0.15 ± 0.05 a | 0.33 ± 0.04 ab | 0.55 ± 0.11 b | 14.7 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turrini, F.; Beruto, M.; Mela, L.; Curir, P.; Triglia, G.; Boggia, R.; Zunin, P.; Monroy, F. Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil. Appl. Sci. 2021, 11, 5495. https://doi.org/10.3390/app11125495
Turrini F, Beruto M, Mela L, Curir P, Triglia G, Boggia R, Zunin P, Monroy F. Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil. Applied Sciences. 2021; 11(12):5495. https://doi.org/10.3390/app11125495
Chicago/Turabian StyleTurrini, Federica, Margherita Beruto, Luciano Mela, Paolo Curir, Giorgia Triglia, Raffaella Boggia, Paola Zunin, and Fernando Monroy. 2021. "Ultrasound-Assisted Extraction of Lavender (Lavandula angustifolia Miller, Cultivar Rosa) Solid By-Products Remaining after the Distillation of the Essential Oil" Applied Sciences 11, no. 12: 5495. https://doi.org/10.3390/app11125495