# The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Featured Application

**This technology is expected to be applied to high-performance photovoltaic applications like zero-emission buildings, light-weight aerospace, and possibly, vehicle-integrated photovoltaic.**

## Abstract

## 1. Introduction

- Tandem solar cells are highly efficient, and various types of the device structure were studied. On-Si tandem is one of them, and it has a distinct advantage of cost, using well-established Si solar cell technology.
- Regardless of the type of material, the annual performance of the tandem solar cells does not perform well due to spectrum mismatching loss.
- The modeling of the spectrum mismatching loss was studied relying on the airmass variation. The intensive study on CPV performance in more than 20 years revealed that the fluctuation of atmospheric parameters played an essential role.
- Due to the development of the new application of the high-efficiency solar cell, including vehicle-integrated solar cells, the precise annual energy yield modeling of the tandem solar cells is required. The knowledge on precise spectrum-mismatching modeling in CPV is expanded to the non-concentration standard installation.
- 4T on Si tandem solar cell is a good candidate for the robustness to the spectrum variation. Its outdoor operation and energy yield modeling was intensively studied in this article. The model did not rely only on airmass but considered real fluctuation of the spectrum in all kinds of climate, considering atmospheric fluctuation.

## 2. Methods

#### 2.1. Device Configuration

#### 2.2. Measurement System

#### 2.3. Spectrum Model

^{2}nm. $f$ is the weather correction factor defined by Equation (2), ${I}_{1\lambda}$ is the global spectral irradiance calculated using Bird’s spectrum model [96] at a wavelength. The unit of $f$ is W/m

^{2}nm. ${I}_{2\lambda}$ is the global spectral irradiance calculated by a spectrum model assuming full cloud covering the sky at a wavelength. The unit of ${I}_{2\lambda}$ is W/m

^{2}nm. $DNI$ is the direct normal irradiance, and ${I}_{d\lambda}$ is the direct normal solar spectral at a wavelength. The unit of ${I}_{d\lambda}$ is W/m

^{2}nm. The spectrum calculated by this model, in contrast to Bird’s model, is shown in Figure 3 [97]. Note that the Bird’s spectrum model was improved by considering atmospheric parameter variability. The Y-axis corresponds to the normalized global spectrum irradiance by integrated spectral irradiance. The black trend line is the measured and normalized global solar spectral irradiance. The gray trend line is the reference spectrum in AM 1.5G. The red trend line and the blue trend line are the calculated global solar spectral irradiance by the MS2E method. Note that Bird’s model only considers air mass, namely, the atmospheric parameters are constant. In the wintertime, atmospheric parameters are close to those under the standard conditions, so that the estimated solar spectrum approaches to the reference AM1.5G spectrum. In the summertime, the aerosol density often drops lower than that of the standard value, and the precipitable water grows larger. The short-wavelength region of the solar spectrum becomes thick, and the long-wavelength part becomes thin. During cloudy days, the influence of cloud appears in the short-wavelength part of the solar spectrum so that the long-wavelength region drops.

#### 2.4. Performance Model

## 3. Results

## 4. Discussion

#### 4.1. Comparison Between 4T and 2T Configuration

_{pp}, which are defined by Equations (3) and (4).

_{pp}value given by Equation (4) corresponds to the degree of suppression of the seasonal variation of performance of 4T configuration relative to standard 2T configuration. Both PR and R

_{pp}values were integrated throughout the day, and their daily trend was plotted in time series. The result with contrast to 2T configuration is shown in Figure 6 and Table 3. Note that the peak-to-peak value of the PR variation of 4T configuration was 0.084, and that of 2T was 0.139. The degree of improvement of seasonal variation R

_{pp}was 39.8% (Figure 7a). As a result, the annual energy yield per nominal power of 4T configuration increased to 1500 kWh/kW, and that of 2T was 1442 kWh/kW (Table 3). The improvement was mainly seen in the summer. It corresponded to the variation of water precipitation (Figure 7b). The bandgap of the bottom cell of Si is 1.11 eV, and the absorption edge is 1100 nm so that the performance of the Si bottom cell would not be affected by the water absorption typically seen in around 1200 nm.

#### 4.2. Regional Difference in the Behavior of 4T and 2T Performance

_{pp}value) increased accordingly.

#### 4.3. Further Performance Improvement

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Araki, K.; Ota, Y.; Saiki, H.; Tawa, H.; Nishioka, K.; Yamaguchi, M. Super-Multi-Junction Solar Cells—Device Configuration with the Potential for More Than 50% Annual Energy Conversion Efficiency (Non-Concentration). Appl. Sci.
**2019**, 9, 4598. [Google Scholar] [CrossRef][Green Version] - Ekins-Daukes, N.J.; Betts, T.R.; Kemmoku, Y.; Araki, K.; Lee, H.S.; Gottschalg, R.; Boreland, M.B.; Infield, D.G.; Yamaguchi, M. Syracuse-a multi-junction concentrator system computer model. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 651–654. [Google Scholar]
- Cameron, C.; Crawford, C.; Foresi, J.; King, D.; McConnell, R.; Riley, D.; Sahm, A.; Stein, J. Performance Model Assessment for Multi-Junction Concentrating Photovoltaic Systems. Aip. Conf. Proc.
**2010**, 1277, 290–293. [Google Scholar] - Araki, K.; Yamaguchi, M. Influences of spectrum change to 3-junction concentrator cells. Sol. Energy Mater. Sol. Cells
**2003**, 75, 707–714. [Google Scholar] [CrossRef] - Cai, Y.; Wang, W.W.; Liu, C.W.; Ding, W.T.; Liu, D.; Zhao, F.Y. Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations. Renew. Energy
**2020**, 147, 1565–1583. [Google Scholar] [CrossRef] - Richter, A.; Hermle, M.; Glunz, S.W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt.
**2013**, 3, 1184–1191. [Google Scholar] [CrossRef] - Jackson, E.D. Areas for Improving of the Semiconductor Solar Energy Converter. In Proceedings of the Transzation Conference on the Use of Solar Energy, Tucson, AZ, USA, 31 October–1 November 1955; University of Arizona Press: Tucson, AZ, USA, 1958; Volume 5, pp. 122–126. [Google Scholar]
- Wolf, M. Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng.
**1960**, 48, 1246–1263. [Google Scholar] - Hutchby, J.A.; Markunas, R.J.; Timmons, M.L.; Chiang, P.K.; Bedair, S.M. A Review of Multijunction Concentrator Solar Cells. In Proceedings of the 18th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 21–25 October 1985; IEEE: New York, NY, USA, 1985; pp. 20–27. [Google Scholar]
- Ludowise, M.J.; LaRue, R.A.; Borden, P.G.; Gregory, P.E.; Dietz, W.T. High-efficiency organometallic vapor phase epitaxy AlGaAs/GaAs monolithic cascade solar cell using metal interconnects. Appl. Phys. Lett.
**1982**, 41, 550–552. [Google Scholar] [CrossRef] - Flores, C. A three-terminal double junction GaAs/GaAlAs cascade solar cells. IEEE Electron. Device Lett.
**1983**, EDL–4, 96–99. [Google Scholar] [CrossRef] - Chung, B.C.; Virshup, G.F.; Hikido, S.; Kaminar, N.R. 27.6% efficiency (1 Sun, air mass 1.5) monolithic Al0.37 Ga0.63 As/GaAs two-junction cascade solar cell with prismatic cover glass. Appl. Phys. Lett.
**1989**, 55, 1741–1743. [Google Scholar] [CrossRef] - Fan, J.C.C.; Tsaur, B.Y.; Palm, B.J. Optical Design of High-Efficiency Multi-Junction Cells. In Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 27–30 September 1982; IEEE: New York, NY, USA, 1982; pp. 692–701. [Google Scholar]
- Yamaguchi, M.; Amano, C.; Sugiura, H.; Yamamoto, A. High efficiency AlGaAs/GaAs multi-junction solar cells. In Proceedings of the 19th IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 4–8 May 1987; IEEE: New York, NY, USA, 1987; pp. 1484–1485. [Google Scholar]
- Ando, K.; Amano, C.; Sugiura, H.; Yamaguchi, M.; Saletesm, A. Non-radiative e-h recombination characteristics of mid-gap electron trap in AlxGa1–x As (x = 0.4) grown by molecular beam epitaxy. Jpn. J. Appl. Phys.
**1987**, 26, L266–L269. [Google Scholar] [CrossRef] - Sugiura, H.; Amano, C.; Yamamoto, A.; Yamaguchi, M. Double hetero¬structure GaAs tunnel junction for AlGaAs/GaAs multi-junction solar cells. Jpn. J. Appl. Phys.
**1988**, 27, 269–272. [Google Scholar] [CrossRef] - Olson, J.M.; Kurtz, S.R.; Kibbler, A.E. A 27.3% efficient Ga0.5In0.5P/ GaAs multi-junction solar cell. Appl. Phys. Lett.
**1990**, 56, 623–625. [Google Scholar] [CrossRef] - Bertness, K.A.; Kurtz, S.R.; Friedman, D.J.; Kibbler, A.E.; Kramer, C.; Olson, J.M. 29.5%-efficiency GaInP/GaAs multi-junction solar cells. Appl. Phys. Lett.
**1994**, 65, 989–991. [Google Scholar] [CrossRef] - Sasaki, K.; Agui, T.; Nakaido, K.; Takahashi, N.; Onitsuka, R.; Takamoto, T. Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. Aip Conf. Proc.
**2013**, 1556, 22–25. [Google Scholar] - Chiu, P.T.; Law, D.L.; Woo, R.L.; Singer, S.; Bhusari, D.; Hong, W.D.; Zakaria, A.; Boisvert, J.C.; Mesropian, S.; King, R.R.; et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 40th IEEE Photovoltaic Specialist Conference, Denver, CO, USA, 8–13 June 2014; pp. 11–13.
- Yamaguchi, M.; Lee, K.-H.; Araki, K.; Kojima, N.J. A review of recent progress in heterogeneous silicon tandem solar cells. Phys. D Appl. Phys.
**2018**, 51, 133002. [Google Scholar] [CrossRef] - Essig, S.; Allebe, C.; Remo, T.; Geisz, T.F.; Steiner, M.A.; Horowitz, K.; Barrud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy
**2017**, 2, 17144. [Google Scholar] [CrossRef] - Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 54). Prog. Photovoltaics
**2019**, 27, 565. [Google Scholar] [CrossRef] - Carmody, M.; Mallick, S.; Margetis, J.; Kodama, R.; Biegala, T.; Xu, D.; Bechmann, P.; Garland, J.W.; Sivananthan, S. Single-crystal II-VI on Si single-junction and tandem solar cells. Appl. Phys. Lett.
**2010**, 96, 153502. [Google Scholar] [CrossRef] - Yao, M.; Cong, S.; Arab, S.; Huang, N.; Povinelli, M.L.; Cronin, S.B.; Dapkus, P.D.; Zhou, C. Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition. Nano Lett.
**2015**, 15, 7217. [Google Scholar] [CrossRef] - Araki, K.; Ota, Y.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Is it CPV? Yes, but it is a partial CPV. In Proceedings of the AIP Conference Proceedings, Bydgoszcz, Poland, 9–11 May 2017; AIP Publishing LLC: Melville, NY, USA, 2017. [Google Scholar]
- Araki, K.; Lee, K.H.; Yamaguchi, M. The possibility of the static LCPV to mechanical-stack III-V//Si module. In Proceedings of the AIP Conference, 6 September 2018; AIP Publishing LLC: Melville, NY, USA, 2018; p. 090002. [Google Scholar]
- Sato, D.; Lee, K.H.; Araki, K.; Masuda, T.; Yamaguchi, M.; Yamada, N. Design and Evaluation of Low-concentration Static III-V/Si Partial CPV Module for Car-rooftop Application. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10 June 2018; pp. 954–957. [Google Scholar]
- Takamoto, T.; Washio, H.; Juso, H. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1–5. [Google Scholar]
- Löper, P.; Moon, S.J.; De Nicolas, S.M.; Niesen, B.; Ledinsky, M.; Nicolay, S.; Bailat, J.; Yum, J.H.; De Wolf, S.; Ballif, C. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys.
**2015**, 17, 1619–1629. [Google Scholar] [CrossRef] - Schneider, B.W.; Lal, N.N.; Baker-Finch, S.; White, T.P. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express
**2014**, 22, A1422–A1430. [Google Scholar] [CrossRef] - Werner, J.; Sahli, F.; Fu, F.; Diaz Leon, J.J.; Walter, A.; Kamino, B.A.; Niesen, B.; Nicolay, S.; Jeangros, Q.; Ballif, C. Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett.
**2018**, 3, 2052–2058. [Google Scholar] [CrossRef] - Sahli, F.; Werner, J.; Kamino, B.A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Leon, J.J.; Sacchetto, D.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater.
**2018**, 17, 820–826. [Google Scholar] [CrossRef] - Hörantner, M.T.; Snaith, H.J. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci.
**2017**, 10, 1983–1993. [Google Scholar] [CrossRef] - Ishii, T.; Otani, K.; Takashima, T.; Xue, Y. Solar spectral influence on the performance of photovoltaic (pv) modules under fine weather and cloudy weather conditions. Prog. Photovolt.
**2013**, 21, 481–489. [Google Scholar] [CrossRef] - Shibata, N.; Ota, Y.; Sakurada, Y.; Takahashi, Y.; Kumagai, I.; Araki, K.; Nishioka, K. Output Comparison of CPV and Flat-Plate Systems in Japanese Meteorological Condition. Aip Conf. Proc.
**2011**, 1407, 341–344. [Google Scholar] - Kirn, B.; Topic, M. Diffuse and direct light solar spectra modeling in pv module performance rating. Sol. Energy
**2017**, 150, 310–316. [Google Scholar] [CrossRef][Green Version] - Nofuentes, G.; García-Domingo, B.; Muñoz, J.V.; Chenlo, F. Analysis of the dependence of the spectral factor of some pv technologies on the solar spectrum distribution. Appl. Energy
**2014**, 113, 302–309. [Google Scholar] [CrossRef] - Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M. Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites. Energy
**2014**, 67, 435–443. [Google Scholar] [CrossRef] - Philipps, S.P.; Bett, A.W.; Horowitz, K.; Kurtz, S. Current Status of Concentrator Photovoltaic (CPV) Technology, Version 1.3; National Renewable Energy Lab NREL: Lakewood, CO, USA, 2017; pp. 10–11.
- Araki, K.; Kondo, M.; Uozumi, H.; Ekins-Daukes, N.J.; Egami, T.; Hiramatsu, M.; Miyazaki, Y.; Yamaguchi, M. Packaging III–V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology. Sol. Energy Mater. Sol. Cells
**2006**, 90, 3320–3326. [Google Scholar] [CrossRef] - Araki, K.; Kondo, M.; Uozumi, H.; Kemmoku, Y.; Egami, T.; Hiramatus, M.; Miyazaki, Y.; Ekins-Daukes, N.J.; Yamaguchi, M.; Siefer, G.; et al. A 28% efficient, 400X and 200 Wp concentrator module. In Proceedings of the 19th European PVSEC, Paris, France, 7–11 June 2004; pp. 2495–2498. [Google Scholar]
- Kurtz, S.R.; Olson, J.M.; Faine, P. The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells. Sol. Cells
**1991**, 30, 501–513. [Google Scholar] [CrossRef] - Philipps, S.P.; Peharz, G.; Hoheisel, R.; Hornung, T.; Al-Abbadi, N.M.; Dimroth, F.; Bett, A.W. Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions. Sol. Energy Mater. Sol. Cells
**2010**, 94, 869–877. [Google Scholar] [CrossRef] - Kinsey, G.S.; Edmondson, K.M. Spectral response and energy output of concentrator multijunction solar cells. Prog. Photovolt. Res. Appl.
**2009**, 17, 279–288. [Google Scholar] [CrossRef] - Araki, K.; Emery, K.; Siefer, G.; Bett, A.W.; Sakakibara, T.; Kemmoku, Y.; Ekins-Daukes, N.J.; Lee, H.S.; Yamaguchi, M. Comparison of efficiency measurements for a HCPV module with 3J cells in 3 sites. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 846–849. [Google Scholar]
- Lee, H.S.; Ekins-Daukes, N.J.; Araki, K.; Kemmoku, Y.; Yamaguchi, M. Field test and analysis: The behavior of 3-J concentrator cells under the control of cell temperature. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 754–757. [Google Scholar]
- Al Husna, H.; Ota, Y.; Minemoto, T.; Nishioka, K. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature. Jpn. J. Appl. Phys.
**2015**, 54, 08KE05. [Google Scholar] [CrossRef] - Verlinden, P.J.; Lasich, J.B. Energy rating of concentrator PV systems using multi-junction III–V solar cells. In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- Victoria, M.; Askins, S.; Nuñez, R.; Domínguez, C.; Herrero, R.; Antón, I.; Sala, G.; Ruíz, J.M. Tuning the current ratio of a CPV system to maximize the energy harvesting in a particular location. Aip Conf. Proc.
**2013**, 1556, 156–161. [Google Scholar] - Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J. An investigation into spectral parameters as they impact CPV module performance. Aip Conf. Proc.
**2010**, 1277, 307–311. [Google Scholar] - Domínguez, C.; Antón, I.; Sala, G.; Askins, S. Current-matching estimation for multijunction cells within a CPV module by means of component cells. Prog. Photovolt. Res. Appl.
**2013**, 21, 1478–1488. [Google Scholar] [CrossRef] - Núñez, R.; Jin, C.; Antón, I.; Sala, G. Spectral classification of worldwide locations using SMR indexes. Aip Conf. Proc.
**2016**, 1766, 090007. [Google Scholar] - Araki, K.; Yamaguchi, M.; Kondo, M.; Uozumi, H. Which is the best number of junctions for solar cells under ever-changing terrestrial spectrum? In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 307–310. [Google Scholar]
- Letay, G.; Baur, C.; Bett, A. Theoretical investigations of III-V multi-junction concentrator cells under realistic spectral conditions. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7–11 June 2004; p. 11. [Google Scholar]
- Ekins-Daukes, N.J.; Kemmoku, Y.; Araki, K.; Betts, T.R.; Gottschalg, R.; Infield, D.G.; Yamaguchi, M. The design specification for syracuse; a multi-junction concentrator system computer model. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7–11 June 2004. [Google Scholar]
- Chan, N.L.; Young, T.B.; Brindley, H.E.; Ekins-Daukes, N.J.; Araki, K.; Kemmoku, Y.; Yamaguchi, M. Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Prog. Photovoltaics Res. Appl.
**2013**, 21, 1598–1610. [Google Scholar] [CrossRef] - Araki, K.; Uozumi, H.; Kondo, M.; Takamoto, T.; Agui, T.; Kaneiwa, M.; Egami, T.; Hiramatsu, M.; Miyazaki, Y.; Kemmoku, Y.; et al. Development of a new 550/spl times/concentrator module with 3J cells-performance and reliability. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 631–634. [Google Scholar]
- Araki, K.; Yamaguchi, M. Extended distributed model for analysis of non-ideal concentration operation. Sol. Energy Mater. Sol. Cells
**2003**, 75, 467–473. [Google Scholar] [CrossRef] - Herrero, R.; Victoria, M.; Domínguez, C.; Askins, S.; Antón, I.; Sala, G. Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells. Prog. Photovolt. Res. Appl.
**2012**, 20, 423–430. [Google Scholar] [CrossRef][Green Version] - Garcia, I.; Algora, C.; Rey-Stolle, I.; Galiana, B. Study of non-uniform light profiles on high concentration III–V solar cells using quasi-3D distributed models. In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- Kurtz, S.R.; O’Neill, M.J. Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 13–17 May 1996; pp. 361–364. [Google Scholar]
- James, L.W. Effects of concentrator chromatic aberration on multi-junction cells. In Proceedings of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 5–9 December 1994; pp. 1799–1802. [Google Scholar]
- Rey-Stolle, I.; Algora, C.; García, I.; Baudrit, M.; Espinet, P.; Galiana, B.; Barrigón, E. Simulating III–V concentrator solar cells: A comparison of advantages and limitations of lumped analytical models; distributed analytical models and numerical simulation. In Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia, PA, USA, 7–12 June 2009; pp. 1622–1627. [Google Scholar]
- Herrero, R.; Askins, S.; Antón, I.; Sala, G.; Araki, K.; Nagai, H. Module optical analyzer: Identification of defects on the production line. Aip Conf. Proc.
**2014**, 1616, 119–123. [Google Scholar] - Araki, K.; Nagai, H.; Herrero, R.; Antón, I.; Sala, G.; Yamaguchi, M. Off-Axis Characteristics of CPV Modules Result From Lens-Cell Misalignment—Measurement and Monte Carlo Simulation. IEEE J. Photovolt.
**2016**, 6, 1353–1359. [Google Scholar] [CrossRef] - Araki, K.; Herrero, R.; Antón, I.; Sala, G.; Nagai, H.; Lee, K.H.; Yamaguchi, M. Why are acceptance angle of P m and Isc different in spite of uniform illumination onto concentrator solar cells? In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016.
- Araki, K.; Nagai, H.; Herrero, R.; Antón, I.; Sala, G.; Lee, K.H.; Yamaguchi, M. 1-D and 2-D Monte Carlo simulations for analysis of CPV module characteristics including the acceptance angle impacted by assembly errors. Sol. Energy
**2017**, 147, 448–454. [Google Scholar] [CrossRef][Green Version] - Saiki, H.; Sakai, T.; Araki, K.; Ota, Y.; Lee, K.H.; Yamaguchi, M.; Nishioka, K. Verification of uncertainty in CPV’s outdoor performance. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Big Island, HI, USA, 10–15 June 2018. [Google Scholar]
- Araki, K.; Ota, Y.; Sakai, T.; Lee, K.H.; Yamaguchi, M. Inherent uncertainty of energy ratings of multi-junction cells by the fluctuation of atmospheric parameters. In Proceedings of the PVSEC-27, Otsu, Japan, 12–17 November 2017. [Google Scholar]
- Ota, Y.; Masuda, T.; Araki, K.; Yamaguchi, M. A mobile multipyranometer array for the assessment of solar irradiance incident on a photovoltaic-powered vehicle. Sol. Energy
**2019**, 184, 84–90. [Google Scholar] [CrossRef] - Ota, Y.; Nishioka, K.; Araki, K.; Ikeda, K.; Lee, K.H.; Yamaguchi, M. Optimization of static concentrator photovoltaics with aspherical lens for automobile. In Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 570–573. [Google Scholar]
- Araki, K.; Ota, Y.; Ikeda, K.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Possibility of static low concentrator PV optimized for vehicle installation. Aip Conf. Proc.
**2016**, 1766, 020001. [Google Scholar] - Araki, K.; Nagai, H.; Yamaguchi, M. Possibility of solar station to EV. Aip Conf. Proc.
**2016**, 1766, 080001. [Google Scholar] - Schuss, C.; Gall, H.; Eberhart, K.; Illko, H.; Eichberger, B. Alignment and interconnection of photovoltaics on electric and hybrid electric vehicles. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Montevideo, Uruguay, 12–15 May 2014; pp. 153–158. [Google Scholar]
- Schuss, C.; Eichberger, B.; Rahkonen, T. Impact of sampling interval on the accuracy of estimating the amount of solar energy. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Taipei, Taiwan, 23–26 May 2016; pp. 1–6. [Google Scholar]
- Sato, D.; Lee, K.H.; Araki, K.; Masuda, T.; Yamaguchi, M.; Yamada, N. Design of low-concentration static III-V/Si partial CPV module with 27.3% annual efficiency for car-roof application. Prog. Photovolt. Res. Appl.
**2019**, 27, 501–510. [Google Scholar] [CrossRef] - Masuda, T.; Araki, K.; Okumura, K.; Urabe, S.; Kudo, Y.; Kimura, K.; Nakado, T.; Sato, A.; Yamaguchi, M. Next environment-friendly cars: Application of solar power as automobile energy source. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 0580–0584. [Google Scholar]
- Araki, K.; Algora, C.; Siefer, G.; Nishioka, K.; Leutz, R.; Carter, S.; Wang, S.; Askins, S.; Ji, L.; Kelly, G. Standardization of the CPV and car-roof PV technology in 2018–Where are we going to go? Aip Conf. Proc.
**2018**, 2012, 070001. [Google Scholar] - Araki, K.; Algora, C.; Siefer, G.; NIshioka, K.; Muller, M.; Leutz, R.; Carter, S.; Wang, S.; Askins, S.; Ji, L.; et al. Toward Standardization of Solar trackers, concentrator PV, and car-roof PV. Grand Renew. Energy Proc. Jpn. Counc. Renew. Energy
**2018**, 2018, 37. [Google Scholar] - Araki, K.; Lee, K.H.; Yamaguchi, M. The possibility of the static LCPV to mechanical-stack III-V//Si module. Aip Conf. Proc.
**2018**, 2012, 090002. [Google Scholar] - Ota, Y.; Masuda, T.; Araki, K.; Yamaguchi, M. Curve-correction factor for characterization of the output of a three-dimensional curved photovoltaic module on a car roof. Coatings
**2018**, 8, 432. [Google Scholar] [CrossRef][Green Version] - Araki, K.; Kemmoku, Y.; Yamaguchi, M. A simple rating method for CPV modules and systems. In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- Araki, K.; Lee, K.H.; Yamaguchi, M. Impact of the atmospheric conditions to the bandgap engineering of multi-junction cells for optimization of the annual energy yield of CPV. Aip Conf. Proc.
**2017**, 1881, 070002. [Google Scholar] - Cariou, R.; Benick, J.; Feldmann, F.; Höhn, O.; Hauser, H.; Beutel, P.; Razek, N.; Wimplinger, M.; Bläsi, B.; Lackner, D.; et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy
**2018**, 3, 326–333. [Google Scholar] [CrossRef] - Araki, K.; Ota, Y.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. CPV Technologies Not Relying on Perfection of Trackers. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 1479–1484. [Google Scholar]
- Masuda, T.; Araki, K.; Okumura, K.; Urabe, S.; Kudo, Y.; Kimura, K.; Nakado, T.; Sato, A.; Yamaguchi, M. Static concentrator photovoltaics for automotive applications. Sol. Energy
**2017**, 146, 523–531. [Google Scholar] [CrossRef] - Lee, K.H.; Araki, K.; Ota, Y.; Nishioka, K.; Yamaguchi, M. Quantifying the potential of III-V/Si partial concentrator by a statistical approach. Aip Conf. Proc.
**2017**, 1881, 080007. [Google Scholar] - Araki, K.; Ota, Y.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Design of the partial concentrator lens for III-V on Si static concentration. Aip Conf. Proc.
**2017**, 1881, 030001. [Google Scholar] - Ota, Y.; Araki, K.; Lee, K.H.; Yamaguchi, M.; Nishioka, K. Estimation of conversion efficiency for partially static concentrator with III-V on Si solar cell. Aip Conf. Proc.
**2017**, 1881, 020010. [Google Scholar] - Nagashima, T.; Okumura, K.; Murata, K.; Kimura, Y. Three-terminal tandem solar cells with a back-contact type bottom cell. In Proceedings of the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036), Anchorage, AK, USA, 15 September 2000; pp. 1193–1196. [Google Scholar]
- Sista, S.; Hong, Z.; Park, M.H.; Xu, Z.; Yang, Y. High-efficiency polymer tandem solar cells with three-terminal structure. Adv. Mater.
**2010**, 22, E77–E80. [Google Scholar] [CrossRef] - Steiner, M.A.; Wanlass, M.W.; Carapella, J.J.; Duda, A.; Ward, J.S.; Moriarty, T.E.; Emery, K.A. A monolithic three-terminal GaInAsP/GaInAs tandem solar cell. Prog. Photovolt. Res. Appl.
**2009**, 17, 587–593. [Google Scholar] [CrossRef] - Soga, T.; Yang, M.; Jimbo, T.; Umeno, M. High-efficiency monolithic three-terminal GaAs/Si tandem solar cells fabricated by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys.
**1996**, 35, 1401. [Google Scholar] [CrossRef] - Wang, L.; Conrad, B.; Soeriyadi, A.; Zhao, X.; Li, D.; Diaz, M.; Lochtefeld, A.; Gerger, A.; Perez-Wurfl, I.; Barnett, A. Current matched three-terminal dual junction GaAsP/SiGe tandem solar cell on Si. Sol. Energy Mater. Sol. Cells
**2016**, 146, 80–86. [Google Scholar] [CrossRef] - Bird, R.E.; Riordan, C. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Clim. Appl. Meteorol.
**1986**, 25, 87–97. [Google Scholar] [CrossRef][Green Version] - Tawa, H.; Saiki, H.; Ota, Y.; Araki, K.; Takamoto, T.; Nishioka, K. Accurate Output Forecasting Method for Various Photovoltaic Modules Considering Incident Angle and Spectral Change Owing to Atmospheric Parameters and Cloud Conditions. Appl. Sci.
**2020**, 10, 703. [Google Scholar] [CrossRef][Green Version] - Araki, K.; Ota, Y.; Sakai, T.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Energy yield prediction of multi-junction cells considering atmospheric parameters fluctuation using Monte Carlo methods. In Proceedings of the PVSEC-27, Otsu, Japan, 12–17 November 2017. [Google Scholar]
- Araki, K.; Lee, K.H.; Yamaguchi, M. Opportunities for breaking an energy generation limit of photovoltaic using multijunction and super-multijunction cells. In Proceedings of the 2018 18th International Workshop on Junction Technology (IWJT), Shanghai, China, 8 March 2018; pp. 1–4. [Google Scholar]
- Araki, K.; Ota, Y.; Lee, K.H.; Sakai, T.; Nishioka, K.; Yamaguchi, M. Analysis of fluctuation of atmospheric parameters and its impact on performance of CPV. Aip Conf. Proc.
**2018**, 2012, 080002. [Google Scholar] - Araki, K.; Yamaguchi, M.; Takamoto, T.; Ikeda, E.; Agui, T.; Kurita, H.; Takahashi, K.; Unno, T. Characteristics of GaAs-based concentrator cells. Sol. Energy Mater. Sol. Cells
**2001**, 66, 559–565. [Google Scholar] [CrossRef] - Araki, K.; Yamaguchi, M. Novel equivalent circuit model and statistical analysis in parameters identification. Sol. Energy Mater. Sol. Cells
**2003**, 75, 457200366. [Google Scholar] [CrossRef] - Araki, K.; Kondo, M.; Uozumi, H.; Yamaguchi, M. Experimental proof and theoretical analysis on effectiveness of passive homogenizers to 3J concentrator solar cells. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11 May 2003; pp. 853–856. [Google Scholar]
- Itagaki, A.; Okumura, H.; Yamada, A. Preparation of meteorological data set throughout Japan for suitable design of PV systems Photovoltaic Energy Conversion. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Shirakawa, K.; Itagaki, A.; Utsunomiya, T. Preparation of hourly solar radiation data on inclined surface (METPV-11) throughout Japan. In Proceedings of the JSES/JWEA Joint Conference, Wakkanai, Japan, 21–22 September 2011; pp. 193–196. [Google Scholar]
- Araki, K.; Ota, Y.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Improvement of the spectral sensitivity of CPV by enhancing luminescence coupling and fine-tuning to the bottom-bandgap matched to local atmospheric conditions. Aip Conf. Proc.
**2019**, 2149, 060001. [Google Scholar] - Araki, K.; Ota, Y.; Lee, K.H.; Nishioka, K.; Yamaguchi, M. Super-Multi-Junction Solar Cells, a New Configuration of the Robust and High-Efficiency Solar Cell and Its Application–Operation Model Based on the Annual Monitoring of the Multi-Junction PV Modules. In Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, 5 August 2019; pp. 1–3. [Google Scholar]
- Araki, K.; Ji, L.; Kelly, G.; Yamaguchi, M. To Do List for Research and Development and International Standardization to Achieve the Goal of Running a Majority of Electric Vehicles on Solar Energy. Coatings
**2018**, 8, 251. [Google Scholar] [CrossRef][Green Version] - Araki, K.; Ota, Y.; Yamaguchi, M. Measurement and Modeling of 3D Solar Irradiance for Vehicle-Integrated Photovoltaic. Appl. Sci.
**2020**, 10, 872. [Google Scholar] [CrossRef][Green Version] - Araki, K.; Lee, K.H.; Masuda, T.; Hayakawa, Y.; Yamada, N.; Ota, Y.; Yamaguchi, M. Rough and Straightforward Estimation of the Mismatching Loss by Partial Shading of the PV Modules Installed on an Urban Area or Car-Roof. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1218–1225. [Google Scholar]
- Araki, K.; Ota, Y.; Lee, K.H.; Yamada, N.; Yamaguchi, M. Curve Correction of the Energy Yield by Flexible Photovoltaics for VIPV and BIPV Applications Using a Simple Correction Factor. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1584–1591. [Google Scholar]
- Tayagaki, T.; Araki, K.; Yamaguchi, M.; Sugaya, T. Impact of Nonplanar Panels on Photovoltaic Power Generation in the Case of Vehicles. IEEE J. Photovolt.
**2019**, 9, 1721–1726. [Google Scholar] [CrossRef] - Araki, K.; Ji, L.; Kelly, G.; Agudo, E.; Anton, I.; Baudrit, M.; Carr, A.; Herrero, R.; Kurtz, S.; Liu, Z.; et al. Modeling and Standardization Researches and Discussions of the Car-roof PV through International Web Meetings. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 2722–2729. [Google Scholar]

**Figure 1.**Measured 4-terminal (4T) III-V/Si module and its solar cell structure: (

**a**) Description of 2-terminal (2T) III-V 3-junction module; (

**b**) Description of measured 4T III-V/Si module, 2 + 1 junctions. Note that the number of junctions is the same.

**Figure 2.**Measured 4T III-V/Si module and its solar cell structure: (

**a**) Description of measured 4T III-V/Si module, 2 + 1 junctions (right) with comparison to the 2-terminal III-V 3-junction module. Note that the number of junctions is the same; (

**b**) Spectro-radiometers [97].

**Figure 3.**Comparison with measured and estimated values (Bird’s model and Miyazaki Spectrum-to-Energy (MS2E) model) of global irradiances tilted at 35° [97]: (

**a**) Solar spectrum in the sunny day in winter; (

**b**) Solar spectrum in the sunny day in summer; (

**c**) Solar spectrum in the cloudy day in winter; (

**d**) Solar spectrum in the cloudy day in summer.

**Figure 4.**Seasonal trend of atmospheric parameters in Miyazaki [97]: (

**a**) Seasonal trend of aerosol optical depth; (

**b**) Seasonal trend of precipitable water.

**Figure 5.**The performance model of the tandem solar cells, considering the spectrum and angle interaction [1].

**Figure 6.**Validation of the performance model (MS2E model) to 4T tandem module, decomposing performance in each output terminal (InGaP/GaAs top cell and Si bottom cell).

**Figure 7.**Comparison of the annual output between 4T configuration and 2T configuration affected by the variation of the atmospheric parameter: (

**a**) Predicted seasonal fluctuation of the normalized energy yield of 4T (red and solid line) and 2T (black and dashed line) configuration; (

**b**) Seasonal variation of precipitable water (optical depth) in our measurement that is likely to be responsible for the difference of behavior between 2T and 4T configuration. Note that this chart is identical to Figure 4b [99].

**Figure 8.**Comparison of the annual output between 4T configuration and 2T configuration affected by the variation of the atmospheric parameter. The red solid trend line in the bottom charts corresponds to the normalized energy yield of 4T, and the black dashed trend line corresponds to that of 2T configuration.

**Table 1.**The difference in performance modeling between concentrator photovoltaic (CPV) and standard installation [1]. The outdoor performance of CPV was intensively studied in more than 20 years considering the spectrum mismatching problem of the tandem solar cells.

CPV ^{1} | Normal Installation | |
---|---|---|

Solar spectrum | Only direct | A mixture of direct, diffused from the sky, and reflection |

Angle | Always normal | Varies by time and seasons |

Spectrum by angle | Constant (only normal) | Needs consider coupling to angle |

^{1}It only generates power by direct solar irradiance using a 2-axis solar tracker.

**Table 2.**Comparison between measured and estimated (predicted by MS2E model) energy yield in a day (3 January 2019).

Measured | Estimated | Error | |
---|---|---|---|

InGaP/GaAs on Si ^{1} | 39.6 Wh | 40.4 Wh | 1.9% |

InGaP/GaAs | 28.0 Wh | 28.9 Wh | 3.4% |

Si | 11.6 Wh | 11.4 Wh | 1.9% |

^{1}4T configuration independently takes the output from the top and bottom cells; the production of the InGaP/GaAs on Si module is a simple sum from the InGaP/GaAs top layer and Si bottom layer.

**Table 3.**Summary of the outdoor performance of 4T on-Si tandem solar cell and normal 2T three-junction tandem solar cell.

PR Peak-to-Peak Value | Annual Energy Yields (kWh/kW) | |
---|---|---|

InGaP/GaAs on Si ^{1}(4-terminal configuration) | 0.084 | 1500 |

InGaP/GaAs/InGaAs (2-terminal configuration) | 0.139 | 1442 |

^{1}4T configuration independently takes the output from the top and bottom cells; the production of the InGaP/GaAs on Si module is a simple sum from the InGaP/GaAs top layer and Si bottom layer.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Araki, K.; Tawa, H.; Saiki, H.; Ota, Y.; Nishioka, K.; Yamaguchi, M. The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module. *Appl. Sci.* **2020**, *10*, 2529.
https://doi.org/10.3390/app10072529

**AMA Style**

Araki K, Tawa H, Saiki H, Ota Y, Nishioka K, Yamaguchi M. The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module. *Applied Sciences*. 2020; 10(7):2529.
https://doi.org/10.3390/app10072529

**Chicago/Turabian Style**

Araki, Kenji, Hiroki Tawa, Hiromu Saiki, Yasuyuki Ota, Kensuke Nishioka, and Masafumi Yamaguchi. 2020. "The Outdoor Field Test and Energy Yield Model of the Four-Terminal on Si Tandem PV Module" *Applied Sciences* 10, no. 7: 2529.
https://doi.org/10.3390/app10072529