Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jung, K.-H. New Pathophysiological Considerations on Cerebral Aneurysms. Neurointervention 2018, 13, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Foundation, B.A. Statistics and Facts—Brain Aneurysm Foundation. Available online: https://bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/ (accessed on 9 October 2020).
- Shapiro, M.; Becske, T.; Sahlein, D.; Babb, J.; Nelson, P.K. Stent-supported aneurysm coiling: A literature survey of treatment and follow-up. Am. J. Neuroradiol. 2012, 33, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.C.; Dowd, C.F.; Higashida, R.T.; Lawton, M.T.; Duckwiler, G.R.; Gress, D.R. Predictors of rehemorrhage after treatment of ruptured intracranial aneurysms: The Cerebral Aneurysm Rerupture After Treatment (CARAT) study. Stroke 2008, 39, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Wanke, I.; Forsting, M. Stents for intracranial wide-necked aneurysms: More than mechanical protection. Neuroradiology 2008, 50, 991–998. [Google Scholar] [CrossRef]
- Wong, G.K.C.; Kwan, M.C.L.; Ng, R.Y.T.; Yu, S.C.H.; Poon, W.S. Flow diverters for treatment of intracranial aneurysms: Current status and ongoing clinical trials. J. Clin. Neurosci. 2011, 18, 737–740. [Google Scholar] [CrossRef]
- Jankowitz, B.T.; Thomas, A.; Jovin, T.; Horowitz, M. Y stenting using kissing stents for the treatment of bifurcation aneurysms. J. Neurointerv. Surg. 2012, 4, 16–21. [Google Scholar] [CrossRef]
- Darkhabani, Z.M.; Lazzaro, M.A.; Zaidat, O.O. Pericallosal artery aneurysm treatment using Y-configuration stent-assisted coil embolization: A report of four cases. J. Neurointerv. Surg. 2012, 4, 459–462. [Google Scholar] [CrossRef]
- Tang, A.Y.S.; Chung, W.C.; Liu, E.T.Y.; Qu, J.Q.; Tsang, A.C.O.; Leung, G.K.K.; Leung, K.M.; Yu, A.C.H.; Chow, K.W. Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated with Pipeline Embolization Device: Side Branch Diameter Study. J. Med. Biol. Eng. 2015, 35, 293–304. [Google Scholar] [CrossRef]
- Arthur, A.S.; Molyneux, A.; Coon, A.L.; Saatci, I.; Szikora, I.; Baltacioglu, F.; Sultan, A.; Hoit, D.; Almandoz, J.E.D.; Elijovich, L. The safety and effectiveness of the Woven EndoBridge (WEB) system for the treatment of wide-necked bifurcation aneurysms: Final 12-month results of the pivotal WEB Intrasaccular Therapy (WEB-IT) Study. J. Neurointerv. Surg. 2019, 11, 924–930. [Google Scholar] [CrossRef]
- De Vries, J.; Boogaarts, H.D.; Sørensen, L.; Holtmannspoetter, M.; Benndorf, G.; Turowski, B.; Bohner, G.; Derakhshani, S.; Navasa, C.; van Zwam, W.H. eCLIPs bifurcation remodeling system for treatment of wide neck bifurcation aneurysms with extremely low dome-to-neck and aspect ratios: A multicenter experience. J. Neurointerv. Surg. 2020. [Google Scholar] [CrossRef]
- Caroff, J.; Mihalea, C.; Ikka, L.; Ozanne, A.; Gallas, S.; Chalumeau, V.; Moret, J.; Spelle, L. O-009 WEB shape modification during follow-up: The bicêtre experience. J. Neurointerv. Surg. 2020. [Google Scholar] [CrossRef]
- Chiu, A.H.; De Vries, J.; O’Kelly, C.J.; Riina, H.; McDougall, I.; Tippett, J.; Wan, M.; De Oliveira Manoel, A.L.; Marotta, T.R. The second-generation eCLIPs Endovascular Clip System: Initial experience. J. Neurosurg. 2018, 128, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Peach, T.W.; Ricci, D.; Ventikos, Y. A Virtual Comparison of the eCLIPs Device and Conventional Flow-Diverters as Treatment for Cerebral Bifurcation Aneurysms. Cardiovasc. Eng. Technol. 2019, 10, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Augsburger, L.; Farhat, M.; Reymond, P.; Fonck, E.; Kulcsar, Z.; Stergiopulos, N.; Rüfenacht, D.A. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 2009, 19, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.M.; Li, Y.C. Effects of stent porosity on hemodynamics in a sidewall aneurysm model. J. Biomech. 2008, 41, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Roszelle, B.N.; Gonzalez, L.F.; Babiker, M.H.; Ryan, J.; Albuquerque, F.C.; Frakes, D.H. Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 2013, 55, 751–758. [Google Scholar] [CrossRef]
- Dennis, K.D.; Rossman, T.L.; Kallmes, D.F.; Dragomir-Daescu, D. Intra-aneurysmal flow rates are reduced by two flow diverters: An experiment using tomographic particle image velocimetry in an aneurysm model. J. Neurointerv. Surg. 2015, 7, 937–942. [Google Scholar] [CrossRef]
- Marotta, T.R.; Gunnarsson, T.; Penn, I.; Ricci, D.R.; McDougall, I.; Marko, A.; Bourne, G.; Da Costa, L. A novel endovascular clip system for the treatment of intracranial aneurysms: Technology, concept, and initial experimental results: Laboratory investigation. J. Neurosurg. 2008, 108, 1230–1240. [Google Scholar] [CrossRef]
- O’Kelly, C.; Rempel, J.L.; Diestro, J.D.B.; Marotta, T.R. Letter to the Editor: Pandemic (COVID-19) Proctoring for eCLIPs Neurointervention. World Neurosurg. 2020, 142, 575. [Google Scholar] [CrossRef]
- Dholakia, R.; Sadasivan, C.; Fiorella, D.J.; Woo, H.H.; Lieber, B.B. Hemodynamics of flow diverters. J. Biomech. Eng. 2017, 139, BIO-16-1270. [Google Scholar] [CrossRef]
- Yazdi, S.G.; Huetter, L.; Docherty, P.D.; Williamson, P.N.; Clucas, D.; Jermy, M.; Geoghegan, P.H. A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics. Appl. Sci. 2019, 9, 3811. [Google Scholar] [CrossRef]
- Geoghegan, P.H.; Buchmann, N.A.; Spence, C.J.T.; Moore, S.; Jermy, M. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 2012, 52, 1331–1347. [Google Scholar] [CrossRef]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 35017. [Google Scholar] [CrossRef]
- Yousif, M.Y.; Holdsworth, D.W.; Poepping, T.L. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids 2011, 50, 769–774. [Google Scholar] [CrossRef]
- Blanco, P.J.; Watanabe, S.M.; Dari, E.A.; Passos, M.A.R.F.; Feijóo, R.A. Blood flow distribution in an anatomically detailed arterial network model: Criteria and algorithms. Biomech. Model. Mechanobiol. 2014, 13, 1303–1330. [Google Scholar] [CrossRef] [PubMed]
- Briganti, F.; Leone, G.; Marseglia, M.; Mariniello, G.; Caranci, F.; Brunetti, A.; Maiuri, F. Endovascular treatment of cerebral aneurysms using flow-diverter devices: A systematic review. Neuroradiol. J. 2015, 28, 365–375. [Google Scholar] [CrossRef]
- Mut, F.; Raschi, M.; Scrivano, E.; Bleise, C.; Chudyk, J.; Ceratto, R.; Lylyk, P.; Cebral, J.R. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J. Neurointerv. Surg. 2015, 7, 286–290. [Google Scholar] [CrossRef]
- Yu, C.H.; Matsumoto, K.; Shida, S.; Kim, D.J.; Ohta, M. A steady flow analsys on a cerebral aneurysm model with several stents for new stent design using PIV. J. Mech. Sci. Technol. 2012, 26, 1333–1340. [Google Scholar] [CrossRef]
- Castro, M.A.; Putman, C.M.; Cebral, J.R. Computational fluid dynamics modeling of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J. Neuroradiol. 2006, 27, 1703–1709. [Google Scholar]
- Fiorella, D.; Arthur, A.S.; Chiacchierini, R.; Emery, E.; Molyneux, A.; Pierot, L. How safe and effective are existing treatments for wide-necked bifurcation aneurysms? Literature-based objective performance criteria for safety and effectiveness. J. Neurointerv. Surg. 2017, 9, 1197–1201. [Google Scholar] [CrossRef]
- Kim, Y.H.; Xu, X.; Lee, J.S. The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method. Ann. Biomed. Eng. 2010, 38, 2274–2292. [Google Scholar] [CrossRef] [PubMed]
- Najjari, M.R.; Hinke, J.A.; Bulusu, K.V.; Plesniak, M.W. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 2016, 57, 96. [Google Scholar] [CrossRef]
- Frolov, S.V.; Sindeev, S.V.; Liepsch, D.; Balasso, A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technol. Health Care 2016, 24, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Valencia, A.; Zarate, A.; Galvez, M.; Badilla, L. Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Methods Fluids 2006, 50, 751–764. [Google Scholar] [CrossRef]
- Babiker, M.H.; Gonzalez, L.F.; Albuquerque, F.; Collins, D.; Elvikis, A.; Zwart, C.; Roszelle, B.; Frakes, D.H. An in vitro study of pulsatile fluid dynamics in intracranial aneurysm models treated with embolic coils and flow diverters. IEEE Trans. Biomed. Eng. 2012, 60, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Chong, B.W.; Indahlastari, A.; Ryan, J.; Workman, C.; Babiker, M.H.; Farsani, H.Y.; Baccin, C.E.; Frakes, D. Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. J. Biomech. Eng. 2016, 138, 021011. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Kabinejadian, F.; Ismail, M.; Kong, W.K.F.; Tay, E.L.W.; Leo, H.L. Ex vivo assessment of bicuspidization repair in treating severe functional tricuspid regurgitation: A stereo-scopic PIV study. Sci. Rep. 2019, 9, 11504. [Google Scholar] [CrossRef]
- Medero, R.; Ruedinger, K.; Rutkowski, D.; Johnson, K.; Roldán-Alzate, A. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV. Ann. Biomed. Eng. 2020, 48, 2484–2493. [Google Scholar] [CrossRef]
- Yamashita, S.; Isoda, H.; Hirano, M.; Takeda, H.; Inagawa, S.; Takehara, Y.; Alley, M.T.; Markl, M.; Pelc, N.J.; Sakahara, H. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2007, 25, 473–478. [Google Scholar] [CrossRef]
Series | Implant Figure | Metal Coverage (Density) | Common Geometry Implanted | Purpose of Use | |
---|---|---|---|---|---|
eCLIPs Series | eBRS | 26% | Bifurcation aneurysm | Coil retention | |
eB | 21% | Bifurcation aneurysm | Coil retention | ||
eBFD | 35% | Bifurcation aneurysm | Flow diversion | ||
Pipeline (PED) | 30% | Sidewall aneurysm | Flow diversion |
Case | Density% | Max. Velocity (m/s) | Max Velocity Reduction (%) | Mean Velocity (m/s) | Mean Velocity Reduction (%) |
---|---|---|---|---|---|
Bifurcation | |||||
Case 1, no implant | N/A | 0.320 | N/A | 0.127 | N/A |
Case 2, eBRS (Generation 2) | 26 | 0.0172 | 95 | 0.0049 | 96 |
Case 3, eB (Generation 3) | 21 | 0.0260 | 92 | 0.0077 | 94 |
Case 4, eBFD (Generation 4) | 35 | 0.0100 | 97 | 0.0014 | 98 |
Case 5, PED 3.75 mm × 18 mm | 30 | 0.0380 | 88 | 0.0075 | 94 |
Sidewall | |||||
Case 6, no implant | N/A | 0.0500 | N/A | 0.0096 | N/A |
Case 7, PED 3.75 mm × 18 mm | 30 | 0.0144 | 84 | 0.0013 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
G. Yazdi, S.; Mercier, D.; Bernard, R.; Tynan, A.; Ricci, D.R. Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Appl. Sci. 2020, 10, 8639. https://doi.org/10.3390/app10238639
G. Yazdi S, Mercier D, Bernard R, Tynan A, Ricci DR. Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Applied Sciences. 2020; 10(23):8639. https://doi.org/10.3390/app10238639
Chicago/Turabian StyleG. Yazdi, Sina, Daniel Mercier, Renee Bernard, Adam Tynan, and Donald R. Ricci. 2020. "Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms" Applied Sciences 10, no. 23: 8639. https://doi.org/10.3390/app10238639
APA StyleG. Yazdi, S., Mercier, D., Bernard, R., Tynan, A., & Ricci, D. R. (2020). Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Applied Sciences, 10(23), 8639. https://doi.org/10.3390/app10238639