Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jung, K.-H. New Pathophysiological Considerations on Cerebral Aneurysms. Neurointervention 2018, 13, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Foundation, B.A. Statistics and Facts—Brain Aneurysm Foundation. Available online: https://bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/ (accessed on 9 October 2020).
- Shapiro, M.; Becske, T.; Sahlein, D.; Babb, J.; Nelson, P.K. Stent-supported aneurysm coiling: A literature survey of treatment and follow-up. Am. J. Neuroradiol. 2012, 33, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, S.C.; Dowd, C.F.; Higashida, R.T.; Lawton, M.T.; Duckwiler, G.R.; Gress, D.R. Predictors of rehemorrhage after treatment of ruptured intracranial aneurysms: The Cerebral Aneurysm Rerupture After Treatment (CARAT) study. Stroke 2008, 39, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Wanke, I.; Forsting, M. Stents for intracranial wide-necked aneurysms: More than mechanical protection. Neuroradiology 2008, 50, 991–998. [Google Scholar] [CrossRef]
- Wong, G.K.C.; Kwan, M.C.L.; Ng, R.Y.T.; Yu, S.C.H.; Poon, W.S. Flow diverters for treatment of intracranial aneurysms: Current status and ongoing clinical trials. J. Clin. Neurosci. 2011, 18, 737–740. [Google Scholar] [CrossRef]
- Jankowitz, B.T.; Thomas, A.; Jovin, T.; Horowitz, M. Y stenting using kissing stents for the treatment of bifurcation aneurysms. J. Neurointerv. Surg. 2012, 4, 16–21. [Google Scholar] [CrossRef]
- Darkhabani, Z.M.; Lazzaro, M.A.; Zaidat, O.O. Pericallosal artery aneurysm treatment using Y-configuration stent-assisted coil embolization: A report of four cases. J. Neurointerv. Surg. 2012, 4, 459–462. [Google Scholar] [CrossRef]
- Tang, A.Y.S.; Chung, W.C.; Liu, E.T.Y.; Qu, J.Q.; Tsang, A.C.O.; Leung, G.K.K.; Leung, K.M.; Yu, A.C.H.; Chow, K.W. Computational Fluid Dynamics Study of Bifurcation Aneurysms Treated with Pipeline Embolization Device: Side Branch Diameter Study. J. Med. Biol. Eng. 2015, 35, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Arthur, A.S.; Molyneux, A.; Coon, A.L.; Saatci, I.; Szikora, I.; Baltacioglu, F.; Sultan, A.; Hoit, D.; Almandoz, J.E.D.; Elijovich, L. The safety and effectiveness of the Woven EndoBridge (WEB) system for the treatment of wide-necked bifurcation aneurysms: Final 12-month results of the pivotal WEB Intrasaccular Therapy (WEB-IT) Study. J. Neurointerv. Surg. 2019, 11, 924–930. [Google Scholar] [CrossRef] [Green Version]
- De Vries, J.; Boogaarts, H.D.; Sørensen, L.; Holtmannspoetter, M.; Benndorf, G.; Turowski, B.; Bohner, G.; Derakhshani, S.; Navasa, C.; van Zwam, W.H. eCLIPs bifurcation remodeling system for treatment of wide neck bifurcation aneurysms with extremely low dome-to-neck and aspect ratios: A multicenter experience. J. Neurointerv. Surg. 2020. [Google Scholar] [CrossRef]
- Caroff, J.; Mihalea, C.; Ikka, L.; Ozanne, A.; Gallas, S.; Chalumeau, V.; Moret, J.; Spelle, L. O-009 WEB shape modification during follow-up: The bicêtre experience. J. Neurointerv. Surg. 2020. [Google Scholar] [CrossRef]
- Chiu, A.H.; De Vries, J.; O’Kelly, C.J.; Riina, H.; McDougall, I.; Tippett, J.; Wan, M.; De Oliveira Manoel, A.L.; Marotta, T.R. The second-generation eCLIPs Endovascular Clip System: Initial experience. J. Neurosurg. 2018, 128, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Peach, T.W.; Ricci, D.; Ventikos, Y. A Virtual Comparison of the eCLIPs Device and Conventional Flow-Diverters as Treatment for Cerebral Bifurcation Aneurysms. Cardiovasc. Eng. Technol. 2019, 10, 508–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augsburger, L.; Farhat, M.; Reymond, P.; Fonck, E.; Kulcsar, Z.; Stergiopulos, N.; Rüfenacht, D.A. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 2009, 19, 204–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, T.M.; Li, Y.C. Effects of stent porosity on hemodynamics in a sidewall aneurysm model. J. Biomech. 2008, 41, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Roszelle, B.N.; Gonzalez, L.F.; Babiker, M.H.; Ryan, J.; Albuquerque, F.C.; Frakes, D.H. Flow diverter effect on cerebral aneurysm hemodynamics: An in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 2013, 55, 751–758. [Google Scholar] [CrossRef]
- Dennis, K.D.; Rossman, T.L.; Kallmes, D.F.; Dragomir-Daescu, D. Intra-aneurysmal flow rates are reduced by two flow diverters: An experiment using tomographic particle image velocimetry in an aneurysm model. J. Neurointerv. Surg. 2015, 7, 937–942. [Google Scholar] [CrossRef]
- Marotta, T.R.; Gunnarsson, T.; Penn, I.; Ricci, D.R.; McDougall, I.; Marko, A.; Bourne, G.; Da Costa, L. A novel endovascular clip system for the treatment of intracranial aneurysms: Technology, concept, and initial experimental results: Laboratory investigation. J. Neurosurg. 2008, 108, 1230–1240. [Google Scholar] [CrossRef]
- O’Kelly, C.; Rempel, J.L.; Diestro, J.D.B.; Marotta, T.R. Letter to the Editor: Pandemic (COVID-19) Proctoring for eCLIPs Neurointervention. World Neurosurg. 2020, 142, 575. [Google Scholar] [CrossRef]
- Dholakia, R.; Sadasivan, C.; Fiorella, D.J.; Woo, H.H.; Lieber, B.B. Hemodynamics of flow diverters. J. Biomech. Eng. 2017, 139, BIO-16-1270. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, S.G.; Huetter, L.; Docherty, P.D.; Williamson, P.N.; Clucas, D.; Jermy, M.; Geoghegan, P.H. A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics. Appl. Sci. 2019, 9, 3811. [Google Scholar] [CrossRef] [Green Version]
- Geoghegan, P.H.; Buchmann, N.A.; Spence, C.J.T.; Moore, S.; Jermy, M. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 2012, 52, 1331–1347. [Google Scholar] [CrossRef]
- Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 35017. [Google Scholar] [CrossRef]
- Yousif, M.Y.; Holdsworth, D.W.; Poepping, T.L. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids 2011, 50, 769–774. [Google Scholar] [CrossRef]
- Blanco, P.J.; Watanabe, S.M.; Dari, E.A.; Passos, M.A.R.F.; Feijóo, R.A. Blood flow distribution in an anatomically detailed arterial network model: Criteria and algorithms. Biomech. Model. Mechanobiol. 2014, 13, 1303–1330. [Google Scholar] [CrossRef] [PubMed]
- Briganti, F.; Leone, G.; Marseglia, M.; Mariniello, G.; Caranci, F.; Brunetti, A.; Maiuri, F. Endovascular treatment of cerebral aneurysms using flow-diverter devices: A systematic review. Neuroradiol. J. 2015, 28, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Mut, F.; Raschi, M.; Scrivano, E.; Bleise, C.; Chudyk, J.; Ceratto, R.; Lylyk, P.; Cebral, J.R. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J. Neurointerv. Surg. 2015, 7, 286–290. [Google Scholar] [CrossRef]
- Yu, C.H.; Matsumoto, K.; Shida, S.; Kim, D.J.; Ohta, M. A steady flow analsys on a cerebral aneurysm model with several stents for new stent design using PIV. J. Mech. Sci. Technol. 2012, 26, 1333–1340. [Google Scholar] [CrossRef]
- Castro, M.A.; Putman, C.M.; Cebral, J.R. Computational fluid dynamics modeling of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J. Neuroradiol. 2006, 27, 1703–1709. [Google Scholar]
- Fiorella, D.; Arthur, A.S.; Chiacchierini, R.; Emery, E.; Molyneux, A.; Pierot, L. How safe and effective are existing treatments for wide-necked bifurcation aneurysms? Literature-based objective performance criteria for safety and effectiveness. J. Neurointerv. Surg. 2017, 9, 1197–1201. [Google Scholar] [CrossRef]
- Kim, Y.H.; Xu, X.; Lee, J.S. The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method. Ann. Biomed. Eng. 2010, 38, 2274–2292. [Google Scholar] [CrossRef] [PubMed]
- Najjari, M.R.; Hinke, J.A.; Bulusu, K.V.; Plesniak, M.W. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 2016, 57, 96. [Google Scholar] [CrossRef]
- Frolov, S.V.; Sindeev, S.V.; Liepsch, D.; Balasso, A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technol. Health Care 2016, 24, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Valencia, A.; Zarate, A.; Galvez, M.; Badilla, L. Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Methods Fluids 2006, 50, 751–764. [Google Scholar] [CrossRef]
- Babiker, M.H.; Gonzalez, L.F.; Albuquerque, F.; Collins, D.; Elvikis, A.; Zwart, C.; Roszelle, B.; Frakes, D.H. An in vitro study of pulsatile fluid dynamics in intracranial aneurysm models treated with embolic coils and flow diverters. IEEE Trans. Biomed. Eng. 2012, 60, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Chong, B.W.; Indahlastari, A.; Ryan, J.; Workman, C.; Babiker, M.H.; Farsani, H.Y.; Baccin, C.E.; Frakes, D. Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. J. Biomech. Eng. 2016, 138, 021011. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Kabinejadian, F.; Ismail, M.; Kong, W.K.F.; Tay, E.L.W.; Leo, H.L. Ex vivo assessment of bicuspidization repair in treating severe functional tricuspid regurgitation: A stereo-scopic PIV study. Sci. Rep. 2019, 9, 11504. [Google Scholar] [CrossRef] [Green Version]
- Medero, R.; Ruedinger, K.; Rutkowski, D.; Johnson, K.; Roldán-Alzate, A. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV. Ann. Biomed. Eng. 2020, 48, 2484–2493. [Google Scholar] [CrossRef]
- Yamashita, S.; Isoda, H.; Hirano, M.; Takeda, H.; Inagawa, S.; Takehara, Y.; Alley, M.T.; Markl, M.; Pelc, N.J.; Sakahara, H. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2007, 25, 473–478. [Google Scholar] [CrossRef] [Green Version]
Series | Implant Figure | Metal Coverage (Density) | Common Geometry Implanted | Purpose of Use | |
---|---|---|---|---|---|
eCLIPs Series | | eBRS | 26% | Bifurcation aneurysm | Coil retention |
| eB | 21% | Bifurcation aneurysm | Coil retention | |
| eBFD | 35% | Bifurcation aneurysm | Flow diversion | |
Pipeline (PED) | | 30% | Sidewall aneurysm | Flow diversion |
Case | Density% | Max. Velocity (m/s) | Max Velocity Reduction (%) | Mean Velocity (m/s) | Mean Velocity Reduction (%) |
---|---|---|---|---|---|
Bifurcation | |||||
Case 1, no implant | N/A | 0.320 | N/A | 0.127 | N/A |
Case 2, eBRS (Generation 2) | 26 | 0.0172 | 95 | 0.0049 | 96 |
Case 3, eB (Generation 3) | 21 | 0.0260 | 92 | 0.0077 | 94 |
Case 4, eBFD (Generation 4) | 35 | 0.0100 | 97 | 0.0014 | 98 |
Case 5, PED 3.75 mm × 18 mm | 30 | 0.0380 | 88 | 0.0075 | 94 |
Sidewall | |||||
Case 6, no implant | N/A | 0.0500 | N/A | 0.0096 | N/A |
Case 7, PED 3.75 mm × 18 mm | 30 | 0.0144 | 84 | 0.0013 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
G. Yazdi, S.; Mercier, D.; Bernard, R.; Tynan, A.; Ricci, D.R. Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Appl. Sci. 2020, 10, 8639. https://doi.org/10.3390/app10238639
G. Yazdi S, Mercier D, Bernard R, Tynan A, Ricci DR. Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Applied Sciences. 2020; 10(23):8639. https://doi.org/10.3390/app10238639
Chicago/Turabian StyleG. Yazdi, Sina, Daniel Mercier, Renee Bernard, Adam Tynan, and Donald R. Ricci. 2020. "Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms" Applied Sciences 10, no. 23: 8639. https://doi.org/10.3390/app10238639
APA StyleG. Yazdi, S., Mercier, D., Bernard, R., Tynan, A., & Ricci, D. R. (2020). Particle Image Velocimetry Measurements of the Flow-Diverting Effects of a New Generation of the eCLIPs Implant for the Treatment of Intracranial Bifurcation Aneurysms. Applied Sciences, 10(23), 8639. https://doi.org/10.3390/app10238639