Heatwave Damage Prediction Using Random Forest Model in Korea
Abstract
1. Introduction
2. Methodology
2.1. Test Area
2.2. Variable Selection
2.3. Random Forest Regression
3. Results of Predicting the Number of Heatwave-Related Patients
3.1. Data Collection and Pre-Processing for Model Training
3.2. Hyper-Parameter Optimization
3.3. Model Comparasion
3.4. Feature Importance
3.5. Model Application and Visualization
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Djalante, R. Key assessments from the IPCC special report on global warming of 1.5 °C and the implications for the Sendai framework for disaster risk reduction. Prog. Disaster Sci. 2019, 1, 100001. [Google Scholar] [CrossRef]
- Peduzzi, P. The disaster risk, global change, and sustainability nexus. Sustainability 2019, 11, 957. [Google Scholar] [CrossRef]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Heatwave Plan for England; Public Health England: London, UK, 2019.
- Lim, J.; Bok, K.; Yoo, J. Design and implementation of a realtime public transport route guidance system using big data analysis. J. Korea Cont. Assoc. 2019, 19, 460–468. [Google Scholar]
- Choi, S.H.; Park, Y.J.; Shim, J.H. Strengthening of disaster management ability through big data utilization. J. Korean Soc. Civ. Eng. 2015, 63, 21–28. [Google Scholar]
- Lee, J.H.; Baek, S.H.; Lee, S.J.; Bae, H.Y. The method for Real-time complex event detection of unstructured big data. Korea Spat. Inf. Soc. 2012, 20, 99–109. [Google Scholar]
- Meehl, G.A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Green, H.K.; Andrews, N.J.; Bickler, G.; Pebody, R.G. Rapid estimation of excess mortality: Nowcasting during the heatwave alert in England and Wales in June 2011. J. Epidemiol. Comm. Health 2012, 66, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.B.; Oleson, K.W.; Jones, B.; Peng, R.D. Classifying heatwaves: Developing health-based models to predict high-mortality versus moderate united states heatwaves. Clim. Chang. 2018, 146, 439–453. [Google Scholar] [CrossRef]
- Kim, D.W.; Deo, R.C.; Park, S.J.; Lee, J.S.; Lee, W.S. Weekly heat wave death prediction model using zero-inflated regression approach. Theor. Appl. Climatol. 2019, 137, 823–838. [Google Scholar] [CrossRef]
- Williams, S.; Nitschke, M.; Weinstein, P.; Pisaniello, D.L.; Parton, K.A.; Bi, P. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ. Int. 2012, 40, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Lee, M.I. Interannual variability of heat waves in Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol. 2016, 36, 4815–4830. [Google Scholar] [CrossRef]
- Suh, M.S.; Oh, S.G.; Lee, Y.S.; Ahn, J.B.; Cha, D.H.; Lee, D.K.; Hong, S.Y.; Min, S.K.; Park, S.C.; Kang, H.S.; et al. Projections of high resolution climate changes for Korea using multiple-regional climate models based on four RCP scenarios. Part 1: Surface air temperature. Asia Pac. J. Atmos. Sci. 2016, 52, 151–169. [Google Scholar] [CrossRef]
- Min, K.H.; Chung, C.H.; Bae, J.H.; Cha, D.H. Synoptic characteristics of extreme heatwaves over the Korean peninsula based on era interim reanalysis data. Int. J. Climatol. 2020, 40, 3179–3195. [Google Scholar] [CrossRef]
- Lee, H.D.; Min, K.H.; Bae, J.H.; Cha, D.H. Characteristics and comparison of 2016 and 2018 heat wave in Korea. Atmosphere 2020, 30, 1–15. [Google Scholar]
- Reid, C.E.; O’Neill, M.S.; Gronlund, C.J.; Brines, S.J.; Brown, D.G.; Diez-Roux, A.V.; Schwartz, J. Mapping community determinants of heat vulnerability. Environ. Health Perspect. 2009, 117, 1730–1736. [Google Scholar] [CrossRef]
- Huisman, M.; Kunst, A.E.; Mackenbach, J.P. Socioeconomic inequalities in morbidity among the elderly: A European view. Soc. Sci. Med. 2003, 57, 861–873. [Google Scholar] [CrossRef]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef]
- Vose, R.S.; Applequist, S.; Bourassa, M.A.; Pryor, S.C.; Barthelmie, R.J.; Blanton, B.; Bromirski, P.D.; Brooks, H.E.; Degaetano, A.T.; Dole, R.M.; et al. Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Am. Meteorol. Soc. 2014, 95, 377–386. [Google Scholar] [CrossRef]
- Zubov, D.; Barbosa, H.A.; Duane, G.S. A nonanticipative analog method for long-term forecasting of air temperature extremes. arXiv 2015, arXiv:1507.03283. [Google Scholar]
- Gershunov, A.; Johnston, Z.; Margolis, H.G.; Guirguis, K. The California heat wave 2006 with impacts on statewide medical emergency. Geogr. Res. Forum 2011, 31, 53–69. [Google Scholar]
- Guirguis, K.; Gershunov, A.; Tardy, A.; Basu, R. The impact of recent heat waves on human health in California. J. Appl. Meteor. Climatol. 2014, 53, 3–19. [Google Scholar] [CrossRef]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, N.; Liu, J.; Zhang, Z.; Liu, Y. Global heat wave hazard considering humidity effects during the 21st century. Int. J. Environ. Res. Public Health 2019, 16, 1513. [Google Scholar] [CrossRef] [PubMed]
- Lemonsu, A.; Viguié, V.; Daniel, M.; Masson, V. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim. 2015, 14, 86–605. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Wang, L.; Gao, Z. Changes in wind speed under enhance urban heat islands in the Beijing metropolitan area. J. Appl. Meteorol. Climatol. 2016, 55, 2369–2375. [Google Scholar] [CrossRef]
- Vescovi, L.; Rebetez, M.; Rong, F. Assessing public health risk due to extremely high temperature events: Climate and social parameters. Clim. Res. 2005, 30, 71–78. [Google Scholar] [CrossRef]
- Kim, Y.; Joh, S. A vulnerability study of the low-income elderly in the context of high temperature and mortality in Seoul, Korea. Sci. Total Environ. 2006, 371, 82–88. [Google Scholar] [CrossRef]
- Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ. Med. 2007, 64, 93–100. [Google Scholar] [CrossRef]
- Bonauto, D.; Anderson, R.; Rauser, E.; Burke, B. Occupational heat illness in Washington state, 1995–2005. Am. J. Ind. Med. 2007, 50, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Spector, J.T.; Bonauto, D.K.; Sheppard, L.; Busch-Isaksen, T.; Calkins, M.; Adams, D. A case-crossover study of heat exposure and injury risk in outdoor agricultural workers. PLoS ONE 2016, 11, e0164498. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, E.; Kwon, B.Y.; Lee, S.; Jo, K.H.; Kim, J. Long-term changes in the heat–mortality relationship according to heterogeneous regional climate: A time-series study in Korea. BMJ 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, X.; Yu, H. Floor heating customer prediction model based on random forest. In Proceedings of the 17th International Conference on Computer and Information Science, Singapore, 6–8 June 2018; pp. 573–578. [Google Scholar]
- Dang, V.H.; Dieu, T.B.; Tran, X.L.; Hoang, N.D. Enhancing the accuracy of rainfall-induced landslide prediction along mountain roads with a GIS-based random forest classifier. Bull. Eng. Geol. Environ. 2019, 78, 2835–2849. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Q.; Du, Y.; Wang, J.; Zhou, J.; Du, Z.; Li, T. A random forest model to predict heatstroke occurrence for heatwave in China. Sci. Total Environ. 2019, 650, 3048–3053. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Huang, J.; Niu, W. Agricultural drought risk evaluation based on an optimized comprehensive index system. Sustainability 2018, 10, 3465. [Google Scholar] [CrossRef]
- Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019. [Google Scholar]
- Zikmund, W.G.; Babin, B.J.; Carr, J.C.; Adhikari, A.; Griffin, M. Business Research Methods: A South Asian Perspective, 8th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Out-of-Bag Estimation; Citeseer: Berkeley, CA, USA, 1996. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, H.; Li, J.; Jiang, Z.; Ma, T. Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.H.; Schwartz, J.D.; Rood, R.B.; O’Neill, M.S. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ. Health Perspect. 2014, 122, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, W.S.; Yoo, J.H. Assessment of medium-range ensemble forecasts of heat waves. Atmos. Sci. Lett. 2016, 17, 19–25. [Google Scholar] [CrossRef]
- Qi, X.; Yang, J. Extended-range prediction of a heat wave event over the Yangtze river valley: Role of intraseasonal signals. Atmos. Ocean. Sci. Lett. 2019, 12, 451–457. [Google Scholar] [CrossRef]
Variable Description | Abbreviation | Units | Data Source |
---|---|---|---|
Static variables—socioeconomic and demographic data | Korean statistical information service | ||
Per capita income | Income | ×$1000 | |
Insurance premiums per person | Insurance | ×$1000 | |
Resident registration population | RRP | ×1 | |
Number of vulnerable occupational groups (agricultural, manufacturing, and construction workers) | V-groups | ×1000 | |
Dynamic variables—meteorological data | KMA | ||
Maximum temperature of the week | Max Tem | °C | |
Minimum temperature of the week | Min Tem | °C | |
Mean temperature of the week | Mean Tem | °C | |
Median temperature of the week | Median Tem | °C | |
Variance temperature of the week | Variance Tem | °C | |
Mean humidity of the week | Mean Hum | % | |
Mean wind speed of the week | Mean wind speed | m/s | |
Dynamic variables—demographic data | Statistical data center | ||
Floating population | FP | ×1 |
Method | MAE | RMSE | RMSLE | |
---|---|---|---|---|
Logistic regression | 5.301 | 12.460 | 0.855 | 0.593 |
SVM | 5.184 | 8.800 | 0.956 | 0.797 |
Decision tree | 5.524 | 13.384 | 0.803 | 0.531 |
Random forest | 3.816 | 8.655 | 0.645 | 0.804 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Jung, D.; Lee, S.; Park, S. Heatwave Damage Prediction Using Random Forest Model in Korea. Appl. Sci. 2020, 10, 8237. https://doi.org/10.3390/app10228237
Park M, Jung D, Lee S, Park S. Heatwave Damage Prediction Using Random Forest Model in Korea. Applied Sciences. 2020; 10(22):8237. https://doi.org/10.3390/app10228237
Chicago/Turabian StylePark, Minsoo, Daekyo Jung, Seungsoo Lee, and Seunghee Park. 2020. "Heatwave Damage Prediction Using Random Forest Model in Korea" Applied Sciences 10, no. 22: 8237. https://doi.org/10.3390/app10228237
APA StylePark, M., Jung, D., Lee, S., & Park, S. (2020). Heatwave Damage Prediction Using Random Forest Model in Korea. Applied Sciences, 10(22), 8237. https://doi.org/10.3390/app10228237