Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Bone Specimens
2.3. Theory
2.4. Signal Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanis, J.A. Pocket Reference to Osteoporosis; Springer: Cham, Switzerland, 2019; pp. 11–20. [Google Scholar]
- Marcocci, C.; Saponaro, F. Multidisciplinary Approach to Osteoporosis; Springer: Cham, Switzerland, 2018; pp. 45–57. [Google Scholar]
- Raum, K.; Leguerney, I.; Chandelier, F.; Bossy, E.; Talmant, M.; Saïed, A.; Peyrin, F.; Laugier, P. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med. Biol. 2005, 31, 1225–1235. [Google Scholar] [CrossRef]
- Laugier, P. Bone Quantitative Ultrasound; Springer: Cham, Switzerland, 2011; pp. 47–71. [Google Scholar]
- Töyräs, J.; Nieminen, M.; Kröger, H.; Jurvelin, J. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone 2002, 31, 503–507. [Google Scholar] [CrossRef]
- Liu, C.; Ta, D.; Fujita, F.; Hachiken, T.; Matsukawa, M.; Mizuno, K.; Wang, W. The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone. J. Appl. Phys. 2014, 115, 064906. [Google Scholar] [CrossRef]
- Njeh, C.; Boivin, C.; Langton, C. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporos. Int. 1997, 7, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Justesen, J.; Stenderup, K.; Ebbesen, E.; Mosekilde, L.; Steiniche, T.; Kassem, M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001, 2, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, G.; Capuani, S.; Manenti, G.; Vinicola, V.; Fusco, A.; Baldi, J.; Scimeca, M.; Hagberg, G.E.; Bozzali, M.; Simonetti, G.; et al. Bone marrow lipid profiles from peripheral skeleton as potential biomarkers for osteoporosis: A 1H-MR spectroscopy study. Acad. Radiol. 2016, 23, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F.; Yeung, D.K.W.; Antonio, G.E.; Lee, F.K.H.; Hong, A.W.L.; Wong, S.Y.S.; Lau, E.M.C.; Leung, P.C. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: Dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005, 236, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F.; Yeung, D.K.W.; Antonio, G.E.; Wong, S.Y.S.; Kwok, T.C.Y.; Woo, J.; Leung, P.C. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006, 241, 831–838. [Google Scholar] [CrossRef]
- Patsch, J.M.; Burghardt, A.J.; Kazakia, G.; Majumdar, S. Noninvasive imaging of bone microarchitecture. Ann. N. Y. Acad. Sci. 2011, 1240, 77. [Google Scholar] [CrossRef]
- Pifferi, A.; Torricelli, A.; Taroni, P.; Bassi, A.; Chikoidze, E.; Giambattistelli, E.; Cubeddu, R. Optical biopsy of bone tissue: A step toward the diagnosis of bone pathologies. J. Biomed. Opt. 2004, 9, 474–481. [Google Scholar] [CrossRef]
- Schulmerich, M.V.; Dooley, K.; Morris, M.D.; Vanasse, T.M.; Goldstein, S.A. Transcutaneous fiber optic Raman spectroscopy of bone using annular illumination and a circular array of collection fibers. J. Biomed. Opt. 2006, 11, 060502. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Morris, M.D.; Mandair, G.S. Raman assessment of bone quality. Clin. Orthop. Relat. Res. 2011, 469, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; Morris, M.D.; Camacho, N.P.; Matousek, P.; Towrie, M.; Parker, A.W.; Goodship, A.E. Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy. J. Bone Miner. Res. 2005, 20, 1968–1972. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef]
- Lashkari, B.; Yang, L.; Mandelis, A. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents. Quant. Imaging Med. Surg. 2015, 5, 46. [Google Scholar]
- Yang, L.; Lashkari, B.; Mandelis, A.; Tan, J.W. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound. Int. J. Thermophys. 2015, 36, 862–867. [Google Scholar] [CrossRef]
- Feng, T.; Kozloff, K.M.; Tian, C.; Perosky, J.E.; Hsiao, Y.-S.; Du, S.; Yuan, J.; Deng, C.X.; Wang, X. Bone assessment via thermal photo-acoustic measurements. Opt. Lett. 2015, 40, 1721–1724. [Google Scholar] [CrossRef]
- Feng, T.; Perosky, J.E.; Kozloff, K.M.; Xu, G.; Cheng, Q.; Du, S.; Yuan, J.; Deng, C.X.; Wang, X. Characterization of bone microstructure using photoacoustic spectrum analysis. Opt. Express 2015, 23, 25217–25224. [Google Scholar] [CrossRef]
- He, W.; Zhu, Y.; Feng, T.; Yuan, J.; Cheng, Q.; Xu, G.; Wang, X. Comparison study of photoacoustic and ultrasound spectrum analysis in osteoporosis detection. Chin. Opt. Lett. 2017, 15, 111101. [Google Scholar]
- Wood, C.; Harutyunyan, K.; Sampaio, D.R.; Konopleva, M.; Bouchard, R. Photoacoustic-based oxygen saturation assessment of murine femoral bone marrow in a preclinical model of leukemia. Photoacoustics 2019, 14, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, I.; Shiloh, L.; Gannot, I.; Eyal, A. First-in-human study of bone pathologies using low-cost and compact dual-wavelength photoacoustic system. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–8. [Google Scholar] [CrossRef]
- Guldager, B.; Brixen, K.T.; Jørgensen, S.J.; Nielsen, H.K.; Mosekilde, L.; Jelnes, R. Effects of Intravenous Edta Treatment on Serum Parathyroid Hormone (1-84) and Biochemical Markers of Bone Turnover. Dan. Med Bull. 1993, 40, 627–630. [Google Scholar] [PubMed]
- Callis, G.; Sterchi, D. Decalcification of bone: Literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J. Histotechnol. 1998, 21, 49–58. [Google Scholar] [CrossRef]
- Madden, V.J.; Henson, M.M. Rapid decalcification of temporal bones with preservation of ultrastructure. Hear. Res. 1997, 111, 76–84. [Google Scholar] [CrossRef]
- Feng, T.; Zhu, Y.; Wang, X. Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis—A Clinical Feasibility Study. BME Front. 2020, 2020, 1081540. [Google Scholar] [CrossRef]
- Cox, B.T.; Laufer, J.G.; Beard, P.C.; Arridge, S.R. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Wear, K.A. Mechanisms of Interaction of Ultrasound with Cancellous Bone: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 454–482. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Taicher, G.Z.; Tinsley, F.C.; Reiderman, A.; Heiman, M.L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 2003, 377, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- El Maghraoui, A.; Borderie, D.; Cherruau, B.; Edouard, R.; Dougados, M.; Roux, C. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J. Rheumatol. 1999, 26, 2205–2209. [Google Scholar] [PubMed]
- Boskey, A.L.; Robey, P.G. The Composition of Bone. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Abdulsamee, N. Erbium Family Laser: Silent Revolution in Dentistry. Review. EC Dent. Sci. 2017, 13, 168–190. [Google Scholar]
- Deán-Ben, X.; Gottschalk, S.; Mc Larney, B.; Shoham, S.; Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev. 2017, 46, 2158–2198. [Google Scholar] [CrossRef] [PubMed]
- Fantarella, D.; Kotlow, L. The 9.3-µm CO2 Dental Laser: Technical Development and Early Clinical Experiences. J. Laser Dent. 2014, 22, 1. [Google Scholar]
- Featherstone, J.; Nelson, D. Laser effects on dental hard tissues. Adv. Dent. Res. 1987, 1, 21–26. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6163. [Google Scholar]
- Mejia, P.A.L.; Manuel, U.C.G.; Pérez, J.L.J.; Gomez, L.H.H.; Butron, H.L.; Cruz-Orea, A. Photoacoustic Spectroscopy Applied to the Study of Bone Consolidation in Fractures. In Materials Science Forum; Trans Tech Publications: Bäch, Switzerland, 2005; Volume 480, pp. 339–344. [Google Scholar]
- Firbank, M.; Hiraoka, M.; Essenpreis, M.; Delpy, D. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 1993, 38, 503. [Google Scholar] [CrossRef]
- Van Veen, R.L.P.; Sterenborg, H.J.; Pifferi, A.; Torricelli, A.; Chikoidze, E.; Cubeddu, R. Determination of visible near-IR absorption coefficients of mammalian fat using time-and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt. 2005, 10, 054004. [Google Scholar] [CrossRef]
- Taroni, P.; Comelli, D.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Absorption of collagen: Effects on the estimate of breast composition and related diagnostic implications. J. Biomed. Opt. 2007, 12, 014021. [Google Scholar] [CrossRef]
- Ehrlich, H.; Koutsoukos, P.G.; Demadis, K.D.; Pokrovsky, O.S. Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part II. Decalcification. Micron 2009, 40, 169–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Zhu, Y.; Kozloff, K.M.; Khoury, B.; Xie, Y.; Wang, X.; Cao, M.; Yuan, J.; Ta, D.; Cheng, Q. Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Appl. Sci. 2020, 10, 8214. https://doi.org/10.3390/app10228214
Feng T, Zhu Y, Kozloff KM, Khoury B, Xie Y, Wang X, Cao M, Yuan J, Ta D, Cheng Q. Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Applied Sciences. 2020; 10(22):8214. https://doi.org/10.3390/app10228214
Chicago/Turabian StyleFeng, Ting, Yunhao Zhu, Kenneth M. Kozloff, Basma Khoury, Yejing Xie, Xueding Wang, Meng Cao, Jie Yuan, Dean Ta, and Qian Cheng. 2020. "Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis" Applied Sciences 10, no. 22: 8214. https://doi.org/10.3390/app10228214
APA StyleFeng, T., Zhu, Y., Kozloff, K. M., Khoury, B., Xie, Y., Wang, X., Cao, M., Yuan, J., Ta, D., & Cheng, Q. (2020). Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis. Applied Sciences, 10(22), 8214. https://doi.org/10.3390/app10228214