The First Evidence of the Insecticidal Potential of Plant Powders from Invasive Alien Plants against Rice Weevil under Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Plant Material
2.2. Chemical Analysis of Plant Material
2.2.1. Preparation of Sample Extracts
2.2.2. Preparation of Standard Solutions
2.2.3. HPLC Conditions
2.2.4. GC Analysis
2.3. Test Insects and Commodity
2.4. Geochemical Analysis of Wood Ash
2.5. Admixture of Plant Powders for Single Use (Bioassay 1)
2.6. Admixture of Plant Powder for Combined Use with Inert Dust (Bioassay 2)
2.7. Data Analysis
3. Results
3.1. Chemical Determination of Essential Oil (as mL/100 g Sample)
3.2. Chemical Determination of Total Polyphenols (as mg/g Dry Matter)
3.3. Geochemical Analysis of Wood Ash
3.4. Mortality when Plant Powders Were Applied as a Single Use (Single Treatment) (Bioassay 1)
3.5. Mortality when Plant Powders Were Applied for Combined Use (Bioassay 2)
3.6. Progeny Production for Bioassay 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar] [CrossRef]
- Korunić, Z.; Field, P. Evaluation of three new insecticide formulations based on inert dusts and botanicals against four stored-grain beetles. J. Stored Prod. Res. 2020, 88, 101633. [Google Scholar] [CrossRef]
- Jean, W.G.; Nchiwan, N.E.; Dieudonne, N.; Christopher, S.; Adler, C. Efficacy of diatomaceous earth and wood ash for the control of Sitophilus zeamais in stored maize. J. Entomol. Zool. Stud. 2015, 3, 390–397. [Google Scholar]
- Bohinc, T.; Horvat, A.; Andrić, G.; Pražić Golić, M.; Kljajić, P.; Trdan, S. Comparison of three different wood ashes and diatomaceous earth in controlling the maize weevil under laboratory conditions. J. Stored Prod. Res. 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Lampiri, E.; Agrafioti, P.; Levizou, E.; Athanassiou, C.G. Insecticidal effect of Dittrichia viscosa lyophilized epicuticular material against for major stored-product beetle species on wheat. Crop. Prot. 2020, 132, 105095. [Google Scholar] [CrossRef]
- Isman, M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crop. Prod. 2017, 110, 10–14. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indicator. 2019, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.J.; Lee, W.; Park, Y.J.; Yang, J.-O. First confirmation of the distribution of rice weevil, Sitophilus oryzae, in South Korea. J. Asia-Pac. Biod. 2018, 11, 69–75. [Google Scholar] [CrossRef]
- Nsikani, M.M.; Geerts, S.; Ruwanza, S.; Richardson, D.M. Secondary invasion and weedy native species dominance after clearing invasive alien plants in South Africa: Status quo and prognosis. S. Afr. J. Bot. 2020, 132, 338–345. [Google Scholar] [CrossRef]
- Laznik, Ž.; Bohinc, T.; Trdan, S. Applicability of invasive alien plants in controlling harmful organisms of cultivated plants. Acta Agric. Slov. 2018, 111, 501–509. (In Slovenian) [Google Scholar] [CrossRef] [Green Version]
- Laznik, Ž.; Bohinc, T.; Franin, K.; Majić, I.; Trdan, S. Efficacy of invasive alien plants in controlling Arionidae slugs. Span. J. Agric. Res. 2020, 18, 1001. [Google Scholar] [CrossRef] [Green Version]
- Bohinc, T.; Horvat, A.; Andrić, G.; Prazić Golić, M.; Kljajić, P.; Trdan, S. Natural versus synthetic zeolites for controlling the maize weevil (Sitophilus zeamais)–like Messi versus Ronaldo? J. Stored Prod. Res. 2020, 88, 101639. [Google Scholar] [CrossRef]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Statgraphics Centurion XVI; Statpoint Technologies Inc.: Warrenton, VA, USA, 2009; Available online: http://www.statgraphics.com (accessed on 3 November 2020).
- Athanassiou, C.G.; Kavallieratos, N.G.; Lazzari, F.A. Insecticidal effect of Keepdry® for the control of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat under laboratory conditions. J. Stored Prod. Res. 2014, 59, 133–139. [Google Scholar] [CrossRef]
- Eroglu, N.; Sakka, M.K.; Emekci, M.; Athanassiou, C.G. Effect of zeolite formulations on the mortality and progeny production of Sitophilus oryzae and Oryzaephilus surinamensis at different temperature and relative humidity levels. J. Stored Prod. Res. 2019, 81, 40–45. [Google Scholar] [CrossRef]
- Korunić, Z. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains. Pestic. (Phytomedicine) Belgrade. 2016, 33, 219–229. [Google Scholar] [CrossRef]
- Adarkwah, C.; Obeng-Ofori, D.; Prozell, S.; Asante, V.; Hőrman, V.; Ulrich, C.; Scholler, M. Toxity and protectant potential of Piper guineense (Piperacea) and Senna siamea (Fabaceae) mixed with diatomaceous earth for the management of three major stored product beetle pests. Int. J. Pest. Man. 2017, 64, 128–139. [Google Scholar] [CrossRef]
- Ntonifor, N.N.; Forbanka, D.N.; Mbuh, J.V. Potency of Chenopodium ambrosioides powders and its combinations with wood ash on Sitophilus zeamais in stored maize. J. Entomol. 2011, 8, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Athanassiou, C.G.; Vayias, B.J.; Dimizas, C.B.; Kavallieratos, N.G.; Papagregoriou, A.S.; Buchelos, C.T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
- Perišić, C.; Vuković, S.; Perišić, V.; Pešić, S.; Vukajlović, F.; Andrić, G.; Kljajić, P. Insecticidal activity of three diatomaceous earths on lesser grain borer, Rhyzopertha dominica F., and their effects on wheat, barley, rye, oats and triticale grain properties. J. Stored Prod. Res. 2018, 75, 38–46. [Google Scholar]
- Rojht, H.; Horvat, A.; Athanassiou, C.G.; Vayias, B.J.; Tomanović, Ž.; Trdan, S. Impact of geochemical composition of diatomaceous earth on its insecticidal activity against adults of Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Pest. Sci. 2010, 83, 429–436. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.T.; Feng, Y.-X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crop. Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Cosimi, S.; Rossi, E.; Cioni, P.L.; Canale, A. Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Chryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J. Stored Prod. Res. 2009, 45, 125–132. [Google Scholar] [CrossRef]
- Silva de Oliveira, A.P.; Cordeiro Agra-Neto, A.; Viana Pontual, E.; de Albuquerque Lima, T.; Vera Cruz, K.C.; Rodrigues de Melo, K.; de Oliveira, A.S.; Breitenbach Barroso Coelho, L.C.; Assuncao Ferreira, M.R.; Lira Soares, L.A.; et al. Evaluation of the insecticidal activity of Moringa oleifera seed extract and lectin (WSMoL) against Sitophilus zeamais. J. Stored Prod. Res. 2020, 87, 101615. [Google Scholar] [CrossRef]
Plant Powder | Dose |
---|---|
Tree of heaven | 2.5 w% |
False indigo | 2.5 w% |
Canada goldenrod | 2.5 w% |
Staghorn sumac | 2.5 w% |
Tree of heaven × wood ash | 1.25 w% × 1.25 w% |
False indigo × wood ash | 1.25 w% × 1.25 w% |
Canada goldenrod × wood ash | 1.25 w% × 1.25 w% |
Staghorn sumac × wood ash | 1.25 w% × 1.25 w% |
Tree of heaven × SilicoSec® | 1.25 w% × 450 ppm |
False indigo × SilicoSec® | 1.25 w% × 450 ppm |
Canada goldenrod × SilicoSec® | 1.25 w% × 450 ppm |
Staghorn sumac × SilicoSec® | 1.25 w% × 450 ppm |
Control wood ash | 2.5 w% |
Control SilicoSec® | 900 ppm |
Control–untreated grain |
Canada Goldenrod Leaves | Canada Goldenrod Flowers | Giant Goldenrod Leaves | Giant Goldenrod Flowers | False Indigo Leaves | |
---|---|---|---|---|---|
amount of oil (mL/100 g) | 2.01 | 0.69 | 2.18 | 1.12 | 0.40 |
alfa-pinene | 1.86 | 1.70 | 2.23 | 0.80 | 1.27 |
camphene | 0.12 | * | 0.48 | * | * |
sabinene | * | * | 0.12 | * | * |
beta-pinene | 0.40 | 0.25 | 0.74 | 0.11 | 0.20 |
beta-myrcene | 0.24 | 0.37 | 0.18 | 0.17 | 0.28 |
alpha-phellandrene | * | * | 0.31 | * | * |
p-cymene | * | * | 0.08 | 0.01 | * |
limonene | 0.69 | 1.90 | 0.57 | 0.56 | 0.11 |
trans ocimene | * | * | * | * | 1.20 |
ocimene | * | * | * | * | 1.60 |
borneol | 0.39 | 0.23 | 0.08 | 0.19 | * |
bornyl acetate | 1.26 | 2.59 | 4.02 | 1.51 | * |
alpha-cubebene | * | * | * | * | 0.69 |
alpha-copaene | 0.12 | 0.26 | 0.09 | 0.21 | 1.39 |
beta-bourbonene | 0.34 | 0.19 | 0.23 | * | * |
beta-elemene | 1.42 | 1.40 | 0.13 | 1.69 | 0.57 |
cyprene | 0.47 | 0.24 | 0.62 | 0.63 | 0.39 |
beta-caryophyllene | 1.54 | 2.24 | 9.92 | 1.95 | 5.11 |
alpha-caryophyllene | 0.58 | 1.02 | 0.43 | 1.04 | 1.33 |
gama-gurjurene | * | * | 2.42 | * | * |
beta-copabene | * | * | 56.44 | 68.31 | * |
delta-cadinene | 54.31 | * | * | * | * |
bicyclogermacrene | 0.81 | 1.27 | 2.57 | 1.40 | * |
germacrene D | * | * | * | * | * |
beta-selinene | 2.40 | 5.23 | 0.10 | 6.95 | * |
gama-cadinene | * | * | 0.26 | * | 4.87 |
beta-bisabolene | 0.12 | 0.42 | * | * | * |
gama-murolene | 0.29 | * | * | * | 26.83 |
isoledene | * | * | * | * | 6.58 |
gama-gurjunene | * | * | * | * | 5.07 |
alpha-bergamotene | * | * | * | * | 6.49 |
beta-seline | * | * | * | * | 2.29 |
cadina-1(10),4-diene | * | * | * | 1.04 | 7.52 |
beta-sesquiphellandrene | 8.08 | * | * | * | * |
germacren B | 0.83 | 1.74 | * | 1.26 | * |
spathulenol | * | 1.44 | * | * | * |
aromarderdrene | * | * | 1.05 | * | 2.46 |
beta-turmerone | 11.71 | * | * | * | * |
cyperone | * | * | 5.39 | * | * |
juniper camphor | * | * | * | * | 4.77 |
Canada Goldenrod Leaves | Canada Goldenrod Flowers | Giant Goldenrod Leaves | Giant Goldenrod Flowers | Staghorn Sumac Leaves | Staghorn Sumac Flowers | Bohemian Knotweed Leaves | False Indigo Leaves | Tree of Heaven Leaves | Japanese Knotweed Leaves | |
---|---|---|---|---|---|---|---|---|---|---|
rutin | 2.822 | 20.085 | 1.031 | 10.727 | 6.514 | 0.200 | 0.291 | 0.631 | 4.552 | 0.097 |
quercitrin | ND | ND | 23.221 | 3.689 | 4.102 | ND | ND | 0.080 | ND | ND |
quercetin | 0.081 | 0.545 | 0.150 | 0.471 | 0.006 | 0.035 | 0.241 | 0.049 | 0.002 | 0.107 |
catechyin hydrate | 3.321 | 7.161 | 15.775 | 5.569 | 4.345 | 11.566 | 4.287 | 4.394 | 21.378 | 4.268 |
naringin | 0.601 | 8.350 | 1.729 | 7.235 | 24.151 | 5.827 | 1.096 | 0.834 | ND | 0.739 |
hydroxy coumarin | ND | ND | ND | 0.277 | ND | ND | ND | ND | ND | ND |
caffeic acid | ND | ND | ND | ND | ND | 0.114 | 0.126 | ND | ND | 0.070 |
p-coumaric acid | 0.161 | 0.728 | 0.115 | ND | 0.580 | 0.065 | 1.515 | ND | ND | 0.169 |
ferulic acid | ND | ND | ND | 0.631 | 0.227 | ND | ND | 0.053 | ND | ND |
Source | df | F | p |
---|---|---|---|
Source between variables | |||
All between | 131 | 340.33 | <0.01 |
Intercept | 1 | 160.11 | <0.01 |
Exposure interval | 2 | 115.05 | <0.01 |
Temperature | 1 | 15.79 | 0.0538 |
Dose | 1 | 199.27 | 0.0629 |
Treatment | 10 | 915.26 | <0.01 |
Exposure interval × temperature | 2 | 5.24 | 0.0054 |
Exposure interval × dose | 2 | 12.96 | <0.01 |
Exposure interval × treatment | 20 | 8.75 | <0.01 |
Temperature × dose | 1 | 41.72 | 0.0529 |
Temperature × treatment | 10 | 12.71 | <0.01 |
Dose × treatment | 10 | 14.17 | <0.01 |
Exposure interval × temperature × dose | 2 | 1.28 | 0.2791 |
Exposure interval × temperature × treatment | 20 | 1.07 | 0.3706 |
Exposure interval × dose × treatment | 20 | 0.96 | 0.5124 |
Temperature × dose × treatment | 10 | 7.15 | <0.01 |
Exposure interval × temperature × dose × treatment | 20 | 0.86 | 0.6354 |
Source within variables | |||
Within interaction | 112 | 99.88 | <0.01 |
R.h. | 1 | 776.60 | <0.01 |
R.h. × exposure interval | 2 | 3.67 | 0.0258 |
R.h. × temperature | 1 | 129.61 | <0.01 |
R.h. × dose | 1 | 37.07 | <0.01 |
R.h. × treatment | 10 | 80.52 | <0.01 |
R.h. × exposure interval × temperature | 2 | 3.14 | 0.0437 |
R.h. × exposure interval × dose | 2 | 4.83 | 0.0081 |
R.h. × exposure interval × treatment | 20 | 11.17 | <0.01 |
R.h. × temperature × dose | 1 | 128.80 | <0.01 |
R.h. × temperature × treatment | 10 | 12.78 | <0.01 |
R.h. × dose × treatment | 10 | 16.38 | <0.01 |
Exposure interval × R.h. × temperature × dose | 2 | 0.58 | 0.5595 |
Exposure interval × R.h. × temperature × treatment | 20 | 2.29 | <0.01 |
Exposure interval × R.h. × dose × treatment | 20 | 0.52 | 0.9593 |
R.h. × temperature × dose × treatment | 10 | 19.34 | <0.01 |
Source | df | F | p |
---|---|---|---|
Source between variables | |||
All between | 84 | 587.33 | <0.01 |
Intercept | 1 | 319.57 | <0.01 |
Exposure interval | 2 | 827.92 | <0.01 |
Temperature | 1 | 435.68 | <0.01 |
Treatment | 13 | 364.68 | <0.01 |
Exposure interval × treatment | 26 | 44.11 | <0.01 |
Exposure interval × temperature | 2 | 4.14 | <0.01 |
Temperature × treatment | 13 | 23.64 | <0.01 |
Exposure interval × temperature × treatment | 26 | 12.64 | <0.01 |
Source within variables | |||
Within interaction | 84 | 785.44 | <0.01 |
R.h. | 1 | 3008.01 | <0.01 |
Exposure interval × R.h. | 2 | 323.71 | <0.01 |
R.h. × temperature | 1 | 233.89 | <0.01 |
R.h. × treatment | 13 | 270.80 | <0.01 |
Exposure interval × R.h. × temperature | 2 | 16.71 | <0.01 |
Exposure interval × R.h. × treatment | 26 | 34.37 | <0.01 |
R.h. × temperature × treatment | 13 | 14.52 | <0.01 |
Exposure interval × R.h. × temperature × treatment | 26 | 8.26 | <0.01 |
55% | 75% | |||
---|---|---|---|---|
20 °C | 25 °C | 20 °C | 25 °C | |
false indigo | 1.11 ± 0.79 Abc | 3.74 ± 1.18 Bbc | 1.11 ± 0.79 Ab | 2.25 ± 0.97 Abc |
false indigo–DE | 2.25 ± 0.96 Bc | 2.25 ± 0.79 Bb | 0.74 ± 0.49 Ab | 0.75 ± 0.50 Aa |
false indigo–wood ash | 7.84 ± 1.75 Be | 47.05 ± 4.24 Bg | 4.44 ± 1.58 Ade | 2.63 ± 1.23 Abc |
Canada goldenrod | 1.11 ± 0.78 Bbc | 3.76 ± 1.19 Bbc | 1.11 ± 0.56 Ab | 1.91 ± 1.14 Ab |
Canada goldenrod–DE | 0.00 ± 0.00 Aa | 7.90 ± 2.57 Bd | 2.63 ± 1.47 Bcd | 1.52 ± 1.17 Aab |
Canada goldenrod–wood ash | 9.75 ± 1.63 Bef | 40.82 ± 4.65 Bf | 2.59 ± 1.08 Acd | 0.75 ± 0.50 Aa |
control DE | 2.22 ± 1.47 Ac | 46.79 ± 4.71 Bfg | 4.09 ± 1.55 Bd | 5.74 ± 1.99 Ad |
control wood ash | 7.48 ± 1.43 Be | 38.4 ± 3.44 Bef | 5.22 ± 2.01 Ae | 3.45 ± 1.91 Ab |
staghorn sumac | 3.03 ± 1.94 Ad | 2.23 ± 1.25 Ab | 2.60 ± 1.21 Acd | 5.85 ± 0.52 Bcd |
staghorn sumac–DE | 0.00 ± 0.00 Aa | 0.75 ± 0.50 Aa | 2.27 ± 1.15 Bc | 3.56 ± 0.03 Bb |
staghorn sumac–wood ash | 11.59 ± 2.68 Bf | 38.17 ± 5.30 Bef | 1.87 ± 0.82 Abc | 4.16 ± 1.22 Ac |
tree of heaven | 1.51 ± 0.60 Bbc | 6.41 ± 1.74 Bc | 0.00 ± 0.00 Aa | 0.74 ± 0.50 Aa |
tree of heaven–DE | 0.75 ± 0.49 Ab | 3.72 ± 1.41 Bc | 2.96 ± 1.03 Bcd | 1.89 ± 1.29 Aab |
tree of heaven–wood ash | 12.34 ± 2.47 Ag | 31.30 ± 2.57 Be | 9.37 ± 3.34 Af | 3.89 ± 1.47 Ab |
55% | 75% | |||
---|---|---|---|---|
20 °C | 25 °C | 20 °C | 25 °C | |
false indigo | 1.51 ± 0.60 Bb | 5.00 ± 2.01 Ac | 1.11 ± 0.78 Aa | 5.48 ± 1.74 Ac |
false indigo–DE | 3.38 ± 0.97 Ac | 10.52 ± 2.43 Bd | 3.00 ± 1.41 Ab | 2.79 ± 0.84 Aab |
false indigo–wood ash | 48.97 ± 2.81 Bef | 97.46 ± 1.22 Bi | 10.39 ± 2.39 Ade | 5.87 ± 1.60 Acd |
Canada goldenrod | 2.00 ± 0.74 Abc | 4.85 ± 1.73 Abc | 4.20 ± 1.88 Bc | 3.41 ± 1.94 Ab |
Canada goldenrod–DE | 0.00 ± 0.00 Aa | 15.97 ± 2.72 Be | 4.90 ± 1.99 Bc | 2.68 ± 1.23 Aab |
Canada goldenrod–wood ash | 48.85 ± 3.27 Bef | 96.66 ± 1.00 Be | 3.75 ± 1.64 Abc | 2.27 ± 1.26 Aab |
control DE | 70.77 ± 3.04 Bh | 100.00 ± 0.00 Bj | 7.54 ± 2.41 Ad | 12.68 ± 5.22 Aef |
control wood ash | 59.07 ± 6.21 Bg | 86.55 ± 2.51 Bg | 11.49 ± 2.00 Ae | 17.36 ± 4.27 Af |
staghorn sumac | 3.04 ± 1.94 Ac | 1.88 ± 0.49 Aa | 7.16 ± 1.73 Bcd | 5.30 ± 2.21 Acd |
staghorn sumac–DE | 5.70 ± 1.37 Bd | 2.30 ± 0.98 Ab | 3.85 ± 1.91 Abc | 2.67 ± 1.23 Ab |
staghorn sumac–wood ash | 44.36 ± 3.28 Be | 94.24 ± 1.76 Bh | 3.74 ± 1.52 Abc | 11.39 ± 2.83 Ae |
tree of heaven | 1.90 ± 0.51 Ab | 10.94 ± 3.51 Bd | 3.71 ± 1.32 Bbc | 1.89 ± 1.13 Aa |
tree of heaven–DE | 3.83 ± 1.67 Ac | 8.25 ± 0.98 Bcd | 4.49 ± 2.19 Bc | 4.31 ± 2.71 Ac |
tree of heaven–wood ash | 51.63 ± 2.93 Bef | 69.23 ± 8.84 Bf | 13.43 ± 3.65 Af | 5.92 ± 1.63 Ad |
55% | 75% | |||
---|---|---|---|---|
20 °C | 25 °C | 20 °C | 25 °C | |
false indigo | 3.04 ± 1.46 Aab | 9.49 ± 10.07 Bb | 3.07 ± 1.52 Aab | 5.64 ± 2.19 Ac |
false indigo–DE | 27.40 ± 3.58 Bc | 52.09 ± 5.53 Ae | 3.04 ± 1.43 Aab | 3.97 ± 2.63 Ab |
false indigo–wood ash | 84.57 ± 3.50 Be | 99.54 ± 0.46 Bgh | 6.38 ± 2.23 Ab | 15.16 ± 3.43 Ae |
Canada goldenrod | 2.27 ± 1.25 Aab | 6.55 ± 2.19 Aa | 4.27 ± 2.03 Bab | 5.00 ± 2.24 Abc |
Canada goldenrod–DE | 4.62 ± 1.85 Ab | 37.12 ± 10.67 Ad | 5.40 ± 2.03 Bab | 90.07 ± 4.50 Bg |
Canada goldenrod–wood ash | 82.37 ± 3.15 Bde | 99.12 ± 0.54 Bg | 5.19 ± 3.41 Aab | 11.18 ± 3.97 Ad |
control DE | 97.33 ± 1.25 Bg | 100.00 ± 0.00 Bh | 10.57 ± 3.89 Ac | 12.49 ± 3.48 Ade |
control wood ash | 78.97 ± 4.85 Bd | 100.00 ± 0.00 Bh | 29.75 ± 3.78 Ae | 41.02 ± 4.99 Af |
staghorn sumac | 4.03 ± 2.09 Aab | 6.10 ± 2.50 Ba | 2.31 ± 1.42 Aa | 8.29 ± 0.59 Aa |
staghorn sumac–DE | 5.70 ± 1.02 Ab | 18.49 ± 4.81 Bc | 7.29 ± 2.27 Bbc | 9.97 ± 1.33 Aa |
staghorn sumac–wood ash | 81.21 ± 4.47 Bde | 100.00 ± 0.00 Bh | 4.57 ± 2.14 Aab | 13.34 ± 4.55 Ae |
tree of heaven | 1.90 ± 0.82 Aa | 8.46 ± 2.64 Bab | 5.54 ± 2.55 Bab | 1.56 ± 1.17 Aab |
tree of heaven–DE | 5.20 ± 1.72 Ab | 33.17 ± 5.67 Bd | 5.57 ± 2.83 Bab | 4.57 ± 2.66 Abc |
tree of heaven–wood ash | 90.05 ± 2.08 Bf | 90.01 ± 5.75 Bf | 15.06 ± 4.23 Ad | 8.30 ± 2.90 Acd |
55% | 75% | |||
---|---|---|---|---|
20 °C | 25 °C | 20 °C | 25 °C | |
false indigo | 140.55 ± 8.33 Ah | 65.65 ±11.10 Agh | 140.88 ± 1.44 Af | 145.17 ± 15.77 Bj |
false indigo–DE | 68.33 ± 5.12 Ad | 25.11 ±3.50 Ae | 130.88 ± 1.36 Be | 139.12 ± 16.88 Bi |
false indigo–wood ash | 23.12 ± 7.65 Abc | 11.88 ±2.77 Ac | 115.88 ± 9.12 Bd | 100.11 ± 12.66 Bf |
Canada goldenrod | 136.36 ± 5.88 Bh | 70.66 ±5.55 Af | 108.55 ± 12.14 Acd | 130.77 ± 15.66 Bh |
Canada goldenrod–DE | 115.91 ± 7.33 Afg | 28.12 ±3.55 Ae | 100.66 ± 14.12 Acd | 25.88 ± 2.88 Aa |
Canada goldenrod–wood ash | 17.66 ± 2.33 Aab | 8.13 ±1.32 Ab | 99.17 ± 5.99 Ac | 100.88 ± 8.88 Bf |
control DE | 11.30 ± 2.74 Aa | 1.02 ±0.04 Aa | 80.16 ± 6.66 Bb | 90.15 ± 5.66 Be |
control wood ash | 21.13 ± 2.97 Ab | 1.05 ±0.06 Aa | 40.12 ± 5.66 Ba | 30.77 ± 5.66 Bb |
staghorn sumac | 120.11 ± 7.99 Ag | 95.11 ±6.66 Bi | 130.88 ± 5.56 Ae | 65.11 ± 5.12 Ad |
staghorn sumac–DE | 80.40 ± 2.55 Ae | 45.44 ±5.44 Af | 115.15 ± 6.65 Bd | 68.56 ± 5.10 Bd |
staghorn sumac–wood ash | 30.30 ± 1.66 Ac | 2.15 ±1.22 Aa | 130.77 ± 7.69 Be | 50.42 ± 5.12 Bc |
tree of heaven | 136.44 ± 12.12 Ah | 79.88 ±2.23 Ah | 114.22 ± 6.77 Acd | 160.88 ± 5.99 Bk |
tree of heaven–DE | 100.21 ± 6.55 Af | 57.33 ±1.77 Ag | 144.15 ± 5.66 Bf | 130.87 ± 6.12 Bh |
tree of heaven–wood ash | 14.25 ± 1.99 Aa | 15.24 ±1.22 Ad | 80.13 ± 6.66 Bb | 120.88 ± 5.67 Bg |
control untreated grain | 170.22 ± 4.33 Ai | 190.66 ±12.11 Aj | 380.11 ± 25.23 Bg | 430.56 ± 12.81 Be |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohinc, T.; Horvat, A.; Ocvirk, M.; Košir, I.J.; Rutnik, K.; Trdan, S. The First Evidence of the Insecticidal Potential of Plant Powders from Invasive Alien Plants against Rice Weevil under Laboratory Conditions. Appl. Sci. 2020, 10, 7828. https://doi.org/10.3390/app10217828
Bohinc T, Horvat A, Ocvirk M, Košir IJ, Rutnik K, Trdan S. The First Evidence of the Insecticidal Potential of Plant Powders from Invasive Alien Plants against Rice Weevil under Laboratory Conditions. Applied Sciences. 2020; 10(21):7828. https://doi.org/10.3390/app10217828
Chicago/Turabian StyleBohinc, Tanja, Aleksander Horvat, Miha Ocvirk, Iztok Jože Košir, Ksenija Rutnik, and Stanislav Trdan. 2020. "The First Evidence of the Insecticidal Potential of Plant Powders from Invasive Alien Plants against Rice Weevil under Laboratory Conditions" Applied Sciences 10, no. 21: 7828. https://doi.org/10.3390/app10217828
APA StyleBohinc, T., Horvat, A., Ocvirk, M., Košir, I. J., Rutnik, K., & Trdan, S. (2020). The First Evidence of the Insecticidal Potential of Plant Powders from Invasive Alien Plants against Rice Weevil under Laboratory Conditions. Applied Sciences, 10(21), 7828. https://doi.org/10.3390/app10217828