Investigation of Open Air Stability of CsPbBr3 Thin-Film Growth on Different Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Substrates
2.3. Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. Morphological Analysis
3.3. UV–Visible Light Absorption Spectra
3.4. Surface Chemical Evolution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rao, C.N.R. Perovskites. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 707–714. [Google Scholar]
- Green, M.A.; Ho-Baillie, A. Perovskite solar cells: The birth of a new era in photovoltaics. ACS Energy Lett. 2017, 2, 822–830. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, Y.; Thompson, B.C. World Scientific Handbook of Organic Optoelectronic Devices: Volume 1: Perovskite Electronics; World Scientific Publishing: Hackensack, NJ, USA, 2018; ISBN 9789813239845. [Google Scholar]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Thakur, D.; Chiang, S.E.; Chandel, A.; Wang, J.S.; Chiu, K.C.; Chang, S.H. The Way to Pursue Truly High-Performance Perovskite Solar Cells. Nanomaterials 2019, 9, 1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanemitsu, Y.; Handa, T. Photophysics of metal halide perovskites: From materials to devices. Jpn. J. Appl. Phys. 2018, 57, 90101. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, Y.; Gaoa, H.; Yan, H. Large-area perovskite solar cells–a review of recent progress and issues. RSC Adv. 2018, 8, 10489. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for CH3NH3PbI3. Phys. Rev. Appl. 2016, 5, 14012. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites. Adv. Funct. Mater. 2016, 26, 3417–3423. [Google Scholar] [CrossRef]
- Calisi, N.; Caporali, S.; Milanesi, A.; Innocenti, M.; Salvietti, E.; Bardi, U. Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Top. Catal. 2018, 61, 1201–1208. [Google Scholar] [CrossRef]
- Lanzetta, L.; Aristidou, N.; Haque, S.A. Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. J. Phys. Chem. Lett. 2020, 11, 574–585. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Frolova, L.A.; Dremova, N.N.; Zhidkov, I.; Martynenko, V.M.; Tsarev, S.A.; Luchkin, S.Y.; Kurmaev, E.Z.; Aldoshin, S.M.; Stevenson, K.J. Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions? J. Phys. Chem. Lett. 2020, 11, 333–339. [Google Scholar] [CrossRef]
- Ava, T.T.; Mamun, A.A.; Marsillac, S.; Namkoong, G. A review: Thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.X.; Shen, T.; Guo, D.; Tang, L.M.; Yang, K.; Deng, H.X. Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat 2020, 2, 1034–1056. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Seok, S.I. Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ. Sci. 2020, 13, 805–820. [Google Scholar] [CrossRef]
- Li, Z.; Song, C.; Rao, L.; Lu, H.; Yan, C.; Cao, K.; Ding, X.; Yu, B.; Tang, Y. Synthesis of Highly Photoluminescent All-Inorganic CsPbX3 Nanocrystals via Interfacial Anion Exchange Reactions. Nanomaterials 2019, 9, 1296. [Google Scholar] [CrossRef] [Green Version]
- Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Kulbak, M.; Cahen, D.; Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef]
- Zhang, J.; Hodes, G.; Jin, Z.; Liu, S.F. All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects. Angew. Chem. Int. Ed. 2019, 58, 15596–15618. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Young Chung, D.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Borri, C.; Calisi, N.; Galvanetto, E.; Falsini, N.; Biccari, F.; Vinattieri, A.; Cucinotta, G.; Caporali, S. First proof-of-principle of inorganic lead halide perovskites deposition by magnetron-sputtering. Nanomaterials 2020, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Syed, M.; Glaser, C.; Hynes, C.; Syed, M. Thermal Annealing of Gold Thin Films on the Structure and Surface Morphology Using RF Magnetron Sputtering. J. Mater. Sci. Eng. B 2018, 8, 66–76. [Google Scholar]
- White, J.R. Annealing behaviour of thin evaporated gold films. Thin Solid Films 1974, 22, 23–35. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A Phys. Chem. 1977, 81, 89–96. [Google Scholar] [CrossRef]
- Dhaminiya, B.P.; Chhillar, P.; Roose, B.; Dutta, V.; Pathak, S.K. Unraveling the effect of crystal structure on degradation of methylammonium lead halide perovskite. ACS Appl. Mater. Interfaces 2019, 11, 22228–22239. [Google Scholar] [CrossRef]
- Di Girolamo, D.; Ibrahim Dar, M.; Dini, D.; Gontrani, L.; Caminiti, R.; Mattoni, A.; Graetzel, M.; Meloni, S. Dual Effect of Humidity on Cesium Lead Bromide: Enhancement and Degradation of Perovskite Films. J. Mater. Chem. A 2019, 7, 12292–12302. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1992. [Google Scholar]
Substrate Type | Chemical Nature | Mineralogical Properties | Optical | Conductive | Uses in PV and Optical Devices |
---|---|---|---|---|---|
Silica glass | SiO2 | Amorphous | Transparent UV–Vis spectrum | No | Optical windows and general use |
ITO | In and Sn oxides | Crystalline | Transparent Vis spectrum | Yes | Transparent conductive substrate |
Soda-lime glass | Commercial grade glass | Amorphous | Transparent Vis spectrum | No | General use |
Gold | Metallic Au | Polycrystalline (111)-single-oriented | Reflective | Yes | Metallic back contact |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calisi, N.; Caporali, S. Investigation of Open Air Stability of CsPbBr3 Thin-Film Growth on Different Substrates. Appl. Sci. 2020, 10, 7775. https://doi.org/10.3390/app10217775
Calisi N, Caporali S. Investigation of Open Air Stability of CsPbBr3 Thin-Film Growth on Different Substrates. Applied Sciences. 2020; 10(21):7775. https://doi.org/10.3390/app10217775
Chicago/Turabian StyleCalisi, Nicola, and Stefano Caporali. 2020. "Investigation of Open Air Stability of CsPbBr3 Thin-Film Growth on Different Substrates" Applied Sciences 10, no. 21: 7775. https://doi.org/10.3390/app10217775
APA StyleCalisi, N., & Caporali, S. (2020). Investigation of Open Air Stability of CsPbBr3 Thin-Film Growth on Different Substrates. Applied Sciences, 10(21), 7775. https://doi.org/10.3390/app10217775