Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PES ENMs Fabrication by Electrospinning
2.3. Characterization of PES ENMs
2.4. Experimental Design and Statistical Analysis
2.5. Pure Water Flux and Retention Test
3. Results and Discussion
3.1. Parameters Optimization in Fabricating PES Electrospun Nanofibers
3.1.1. Response Surface Model Analysis for Applied Voltage
3.1.2. Effects of Electrospinning Parameters on Applied Voltage
3.1.3. Response Surface Model Analysis for Average Fiber Diameter
3.1.4. Effects of the Electrospinning Parameters on the Average Fiber Diameter
3.2. Particulate Removal of PES Electrospun Nanofibrous Membranes in Liquid Filtration
3.2.1. Characterization of the PES ENMs
3.2.2. Pore Characterization of the PES ENMs
3.2.3. Pure Water Flux and PS Retention Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neo, Y.P.; Ray, S.; Easteal, A.J.; Nikolaidis, M.G.; Quek, S.Y. Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. J. Food Eng. 2012, 109, C645–C651. [Google Scholar] [CrossRef]
- Nasreen, S.; Sundarrajan, S.; Nizar, S.; Balamurugan, R.; Ramakrishna, S. Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 2013, 3, 266–284. [Google Scholar] [CrossRef] [PubMed]
- Barhate, R.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membr. Sci. 2007, 296, C1–C8. [Google Scholar] [CrossRef]
- Chen, L.; Bromberg, L.; Hatton, T.A.; Rutledge, G.C. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 2007, 3, C4675–C4682. [Google Scholar] [CrossRef]
- Sill, T.J.; Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008, 29, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Guo, J.; Zhu, S.; Li, Y.; Zhang, Q.; Zhu, M. Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater. Lett. 2012, 74, 247–249. [Google Scholar] [CrossRef]
- Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. J. Membr. Sci. 2012, 281, 581–586. [Google Scholar] [CrossRef]
- Aussawasathien, D.; Teerawattananon, C.; Vongachariya, A. Separation of micronto submicron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters. J. Membr. Sci. 2006, 315, 11–19. [Google Scholar] [CrossRef]
- Sato, A.; Wang, R.; Ma, H.; Hsiao, B.S.; Chu, B. Novel nanofibrous scaffolds for water filteration with bacteria and virus removal capability. J. Electron. Microsc. 2011, 60, 201–209. [Google Scholar] [CrossRef]
- Kaur, S.; Barhate, R.; Sundarrajan, S.; Matsuura, T.; Ramakrishna, S. Hot pressing of electrospun membrane and its influence on separation performance on thin film composite nanofiltrtion membrane. Desalination 2011, 279, 201–209. [Google Scholar] [CrossRef]
- Matabola, K.P.; Moutloali, R.M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci. 2013, 48, 5475–5482. [Google Scholar] [CrossRef]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Gopal, R.; Kaur, S.; Feng, C.Y.; Chan, C.; Ramakrishna, S.; Tabe, S.; Matsuura, T. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J. Membr. Sci. 2007, 289, 210–219. [Google Scholar] [CrossRef]
- Montgomery, D. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Maleki, H.; Gharehaghaji, A.A.; Criscenti, G.; Moroni, L.; Dijkstra, P.J. The influence of process parameters on the properties of electrospun PLLA yarns studied by the response surface methodology. J. Appl. Polym. Sci. 2015, 132, 41388. [Google Scholar] [CrossRef]
- Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. Regeneration of Bombyx mori silk by electrospinning—Part 1: Processing parameters and geometric properties. Polymer 2003, 44, 5721–5727. [Google Scholar] [CrossRef]
- Sener, A.G.; Altay, A.S.; Altay, F. Effect of voltage on morphology of electrospun nanofibers. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; pp. I-324–I-328. [Google Scholar]
- Yalcinkaya, B.; Yener, F.; Jirsak, O.; Cengiz-Callioglu, F. On the nature of electric current in the electrospinning process. J. Nanomater. 2013, 2013, 538179. [Google Scholar] [CrossRef]
- Dibrova, A.K.; Glazunov, V.B.; Papkov, S.P. Interaction in the system polymer-dipolar aprotic solvent-salt. Fibre Chem. 1987, 18, 180–183. [Google Scholar] [CrossRef]
- Lee, H.J.; Won, J.; Lee, H.; Kang, Y.S. Solution properties of poly (amic acid)–NMP containing LiCl and their effects on membrane morphologies. J. Membr. Sci. 2002, 196, 267–277. [Google Scholar] [CrossRef]
- Ahmed, I.; Idris, A.; Pa, N.F.C. Novel method of synthesizing poly(ether sulfone) membranes containing two solvents and a lithium chloride additive and their performance. J. Appl. Polym. Sci. 2010, 115, 1428–1437. [Google Scholar] [CrossRef]
- Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Qin, X.-H.; Wang, S.-Y. Interior structure of polyacrylonitrile (PAN) nanofibers with LiCl. Mater. Lett. 2008, 62, 1325–1327. [Google Scholar] [CrossRef]
- Chen, J.-P.; Ho, K.-H.; Chiang, Y.-P.; Wu, K.-W. Fabrication of electrospun poly (methyl methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization. J. Membr. Sci. 2009, 340, 9–15. [Google Scholar] [CrossRef]
- Wool, R.P. Polymer entanglements. Macromolecules 1993, 26, 1564–1569. [Google Scholar] [CrossRef]
- Megelski, S.; Stephens, J.S.; Chase, D.B.; Rabolt, J.F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456–8466. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, B.; Hsiao, B.S.; Chu, B. Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci. 2012, 392, 167–174. [Google Scholar] [CrossRef]
- Belfer, S.; Fainchtain, R.; Purinson, Y.; Kedem, O. Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J. Membr. Sci. 2000, 172, 113–124. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Springer: London, UK, 1996. [Google Scholar]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S. Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J. Membr. Sci. 2012, 392, 101–111. [Google Scholar] [CrossRef]
- Bae, J.; Baek, I.; Choi, H. Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance. Water Res. 2016, 105, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Ma, H.; Hsiao, B.S.; Chu, B. High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer 2013, 54, 548–556. [Google Scholar] [CrossRef]
- Huisman, I.H.; Dutrê, B.; Persson, K.M.; Trägårdh, G. Water permeability in ultrafiltration and microfiltration: Viscous and electroviscous effects. Desalination 1997, 113, 95–103. [Google Scholar] [CrossRef]
- Homaeigohar, S.S.; Buhr, K.; Ebert, K. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J. Membr. Sci. 2010, 365, 68–77. [Google Scholar] [CrossRef] [Green Version]
ENM 30 | ENM 30-0.01 | ENM 30-0.10 | |
---|---|---|---|
PES concentration (% (w/v)) | 30 | 30 | 30 |
LiCl concentration (% (w/v)) | 0 | 0.01 | 0.10 |
Applied voltage (kV) | 13.0 | 15.0 | 21.0 |
Feed rate (mL/h) | 0.5 | 0.3 | 0.3 |
Tip-to-collector distance (cm) | 20 | 20 | 20 |
Humidity (%) | 40–50 | 40–50 | 40–50 |
Independent Variables | Code | Real Values of the Coded Level | ||
---|---|---|---|---|
–1 | 0 | 1 | ||
LiCl concentration (% (w/v)) | X1 | 0.01 | 0.03 | 0.05 |
PES concentration (% (w/v)) | X2 | 28 | 30 | 32 |
Feed rate (mL/h) | X3 | 0.3 | 0.4 | 0.5 |
Tip-to-collector distance (cm) | X4 | 20 | 25 | 30 |
Exp. No. | Coded Levels | Y1 (kV) | Y2 (nm) | |||
---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | |||
1 | 0 | −1 | 0 | 1 | 21.5 | 258 |
2 | 0 | 0 | −1 | 1 | 20.0 | 264 |
3 | 0 | 1 | 0 | 1 | 20.5 | 357 |
4 | −1 | 1 | 0 | 0 | 15.5 | 384 |
5 | 0 | 0 | 1 | −1 | 17.5 | 302 |
6 | 0 | −1 | 1 | 0 | 19.5 | 351 |
7 | 1 | 1 | 0 | 0 | 20.5 | 294 |
8 | 0 | 0 | 0 | 0 | 19.5 | 312 |
9 | 0 | −1 | −1 | 0 | 18.5 | 221 |
10 | −1 | 0 | −1 | 0 | 15.0 | 328 |
11 | −1 | 0 | 1 | 0 | 18.0 | 424 |
12 | 1 | 0 | −1 | 0 | 19.5 | 230 |
13 | −1 | 0 | 0 | −1 | 14.5 | 382 |
14 | 1 | −1 | 0 | 0 | 21.0 | 258 |
15 | 0 | 1 | 1 | 0 | 20.0 | 336 |
16 | −1 | 0 | 0 | 1 | 18.5 | 343 |
17 | 1 | 0 | 0 | 1 | 22.5 | 275 |
18 | 0 | 1 | −1 | 0 | 18.0 | 312 |
19 | 0 | 0 | 0 | 0 | 19.5 | 287 |
20 | 0 | 0 | 0 | 0 | 19.5 | 305 |
21 | 1 | 0 | 0 | −1 | 17.5 | 272 |
22 | 0 | 0 | 1 | 1 | 22.0 | 344 |
23 | 0 | 0 | −1 | −1 | 15.5 | 266 |
24 | 0 | −1 | 0 | −1 | 17.5 | 282 |
25 | 0 | 1 | 0 | −1 | 17.0 | 302 |
26 | −1 | −1 | 0 | 0 | 17.0 | 364 |
27 | 1 | 0 | 1 | 0 | 21.5 | 276 |
Parameter | Coefficient | Standard Error | T-Value | p-Value | |
---|---|---|---|---|---|
Constant | 19.500 | 0.242 | 80.66 | 0.000 | Significant |
X1 (LiCl concentration) | 2.000 | 0.121 | 16.55 | 0.000 | Significant |
X2 (PES concentration) | −0.292 | 0.121 | −2.41 | 0.033 | Significant |
X3 (Feed rate) | 1.000 | 0.121 | 8.27 | 0.000 | Significant |
X4 (Tip-to-collector distance) | 2.125 | 0.121 | 17.58 | 0.000 | Significant |
X12 | −0.813 | 0.181 | −4.48 | 0.001 | Significant |
X22 | −0.125 | 0.181 | −0.69 | 0.504 | |
X32 | −0.313 | 0.181 | −1.72 | 0.110 | |
X42 | −0.375 | 0.181 | −2.07 | 0.061 | |
X1X2 | 0.250 | 0.209 | 1.19 | 0.256 | |
X1X3 | −0.250 | 0.209 | −1.19 | 0.256 | |
X1X4 | 0.250 | 0.209 | 1.19 | 0.256 | |
X2X3 | 0.250 | 0.209 | 1.19 | 0.256 | |
X2X4 | −0.125 | 0.209 | −0.60 | 0.562 | |
X3X4 | 0.000 | 0.209 | 0.00 | 1.000 |
Parameter | Coefficient | Standard Error | T-Value | p-Value | |
---|---|---|---|---|---|
Constant | 301.33 | 8.50 | 35.46 | 0.000 | Significant |
X1 (LiCl concentration) | −51.67 | 4.25 | −12.16 | 0.000 | Significant |
X2 (PES concentration) | 20.92 | 4.25 | 4.92 | 0.000 | Significant |
X3 (Feed rate) | 34.33 | 4.25 | 8.08 | 0.000 | Significant |
X4 (Tip-to-collector distance) | 2.92 | 4.25 | 0.69 | 0.505 | |
X12 | 18.71 | 6.37 | 2.94 | 0.012 | Significant |
X22 | 4.83 | 6.37 | 0.76 | 0.463 | |
X32 | −3.29 | 6.37 | −0.52 | 0.615 | |
X42 | −4.17 | 6.37 | −0.65 | 0.526 | |
X1X2 | 4.00 | 7.36 | 0.54 | 0.597 | |
X1X3 | −12.5 | 7.36 | −1.70 | 0.115 | |
X1X4 | 10.5 | 7.36 | 1.43 | 0.179 | |
X2X3 | −26.5 | 7.36 | −3.60 | 0.004 | Significant |
X2X4 | 19.75 | 7.36 | 2.68 | 0.020 | Significant |
X3X4 | 11.00 | 7.36 | 1.49 | 0.161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Kim, H.; Park, S.; Kim, K.S.; Choi, H. Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application. Appl. Sci. 2020, 10, 7295. https://doi.org/10.3390/app10207295
Bae J, Kim H, Park S, Kim KS, Choi H. Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application. Applied Sciences. 2020; 10(20):7295. https://doi.org/10.3390/app10207295
Chicago/Turabian StyleBae, Jiyeol, Hyuna Kim, Saerom Park, Kwang Soo Kim, and Heechul Choi. 2020. "Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application" Applied Sciences 10, no. 20: 7295. https://doi.org/10.3390/app10207295
APA StyleBae, J., Kim, H., Park, S., Kim, K. S., & Choi, H. (2020). Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application. Applied Sciences, 10(20), 7295. https://doi.org/10.3390/app10207295