Next Article in Journal
Design Specifications for an Auxiliary Incision Retractor in Dacryocystorhinostomy Surgeries
Previous Article in Journal
Interdisciplinarily Exploring the Most Potential IoT Technology Determinants in the Omnichannel E-Commerce Purchasing Decision-Making Processes
Open AccessArticle

Development of Stochastic Fatigue Model of Reinforcement for Reliability of Concrete Structures

1
Department of Civil Engineering, Aalborg University, 9100 Aalborg, Denmark
2
Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
*
Author to whom correspondence should be addressed.
Appl. Sci. 2020, 10(2), 604; https://doi.org/10.3390/app10020604
Received: 15 November 2019 / Revised: 6 January 2020 / Accepted: 8 January 2020 / Published: 14 January 2020
(This article belongs to the Section Civil Engineering)
This paper presents recent contributions to the Marie Skłodowska-Curie Innovative Training Network titled INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of Structures-Training for Assessment of Risk) in the field of reliability approaches for decision-making for wind turbines and bridges . Stochastic modeling of uncertainties for fatigue strength parameters is an important step as a basis for reliability analyses. In this paper, the Maximum Likelihood Method (MLM) is used for fitting the statistical parameters in a regression model for the fatigue strength of reinforcement bars. Furthermore, application of the Bootstrapping method is investigated. The results indicate that the latter methodology does not work well in the considered case study because of run-out tests within the test data. Moreover, the use of the Bayesian inference with the Markov Chain Monto Carlo approach is studied. These results indicate that a reduction in the statistical uncertainty can be obtained, and thus, better parameter estimates are obtained. The results are used for stochastic modelling in reliability assessment of a case study with a composite bridge. The reduction in statistical uncertainty shows high impact on the fatigue reliability in a case study on the Swiss viaduct Crêt De l’Anneau. View Full-Text
Keywords: Bayesian inference; bootstrap method; Maximum Likelihood Method; reinforced-concrete; uncertainty; fatigue-resistance Bayesian inference; bootstrap method; Maximum Likelihood Method; reinforced-concrete; uncertainty; fatigue-resistance
Show Figures

Figure 1

MDPI and ACS Style

Rastayesh, S.; Mankar, A.; Dalsgaard Sørensen, J.; Bahrebar, S. Development of Stochastic Fatigue Model of Reinforcement for Reliability of Concrete Structures. Appl. Sci. 2020, 10, 604.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop