# Performance of Hybrid Filter in a Microgrid Integrated Power System Network Using Wavelet Techniques

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

- (i)
- Controlling the VSI of HSAPF, and
- (ii)
- Controlling the DES units of MG using advanced maximum power point tracking (MPPT) techniques for PV and WT system.

- Mitigate the PQ problems by decreasing the total harmonic distortions (THD) below 5% (as per the Institute of Electrical and Electronics Engineers (IEEE)-519 standard) and improving the PQ with a balanced load and improving the power factor.
- Maintain the power transfer system effectively before the availability of wind velocity and solar insolation level.
- Effectively operate the MG in the islanded condition during the case of a fault in the supply grid and controls load power management.
- Implement AMDWPT based SRF theory of managing the VSI of HSAPF and LINC for tracking the maximum power from the PV system and WT.

## 2. Proposed System Design

## 3. Control Strategies

#### 3.1. Learning-Based Incremental Conductance (LINC) Technique

#### 3.2. Synchronous Reference Frame

_{La}, i

_{Lb}, and i

_{Lc}in the rotating dq frame are presented in Equation (12).

_{d}and i

_{q}.

_{d}and i

_{q}are the direct and quadrature axis current. Again,

#### 3.3. Discrete Wavelet Packet Transform

#### 3.4. Advanced Maximal Overlap DWPT (AMDWPT)

## 4. Results and Discussions

#### 4.1. Performance of Hybrid Filter under Various Conditions

#### 4.2. Performance of Hybrid Filter under Perturbations in Balanced and Unbalanced Non-Linear Loads

#### 4.3. Performance with SOC Percentage Equal to 100%.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Modeling of Wind Turbine

^{3}), $A\to $ is the area swept by the turbine blades (in m

^{2}), ${V}_{w}\to $ is the wind speed (in m/s), and ${\omega}_{m}\to $ is the mechanical angular speed of the turbine (in rad/s).

#### Appendix A.2. Modeling of Photovoltaics

#### Appendix A.3. Modeling of Battery Energy Storage System

#### Appendix A.4. Selection of DC Capacitor Voltage

#### Appendix A.5. Selection of DC-Link Capacitor Based on DBC Calculation

#### Appendix A.6. Design of Alternating Current Inductor

## References

- Kumar, N.M.; Ghosh, A.; Chopra, S.S. Power Resilience Enhancement of a Residential Electricity User Using Photovoltaics and a Battery Energy Storage System under Uncertainty Conditions. Energies
**2020**, 13, 4193. [Google Scholar] [CrossRef] - He, J.; Li, Y.W.; Blaabjerg, F. Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller. IEEE Trans. Ind. Electron.
**2013**, 61, 2784–2794. [Google Scholar] [CrossRef] - Kumar, N.M. Blockchain: Enabling wide range of services in distributed energy system. Beni-Suef Univ. J. Basic Appl. Sci.
**2018**, 7, 701–704. [Google Scholar] [CrossRef] - Kumar, N.M.; Chopra, S.S.; Chand, A.A.; Elavarasan, R.M.; Shafiullah, G. Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7. Sustainability
**2020**, 12, 3944. [Google Scholar] [CrossRef] - Babu, T.S.; Vasudevan, K.R.; Ramachandaramurthy, V.K.; Sani, S.B.; CheMud, S.; Lajim, R.M. A Comprehensive Review of Hybrid Energy Storage Systems: Converter Topologies, Control Strategies and Future Prospects. IEEE Access
**2020**, 8, 148702–148721. [Google Scholar] [CrossRef] - Mehrasa, M.; Pouresmaeil, E.; Jørgensen, B.N.; Catalão, J.P. A control plan for the stable operation of microgrids during grid-connected and islanded conditions. Electr. Power Syst. Res.
**2015**, 129, 10–22. [Google Scholar] [CrossRef] [Green Version] - Kumar, S.A.; Subathra, M.S.P.; Kumar, N.M.; Malvoni, M.; Sairamya, N.J.; George, S.T.; Suviseshamuthu, E.S.; Chopra, S. A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network. Energies
**2020**, 13, 4238. [Google Scholar] [CrossRef] - Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C.; Teodorescu, R.; Huang, L. Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid
**2013**, 5, 683–692. [Google Scholar] [CrossRef] [Green Version] - Khadkikar, V.; Xu, D.; Cecati, C. Emerging power quality problems and state-of-the-art solutions. IEEE Trans. Ind. Electron.
**2016**, 64, 761–763. [Google Scholar] [CrossRef] [Green Version] - Latran, M.B.; Teke, A.; Yoldaş, Y. Mitigation of power quality problems using distribution static synchronous compensator: A comprehensive review. IET Power Electron.
**2015**, 8, 1312–1328. [Google Scholar] [CrossRef] - Lu, X.; Lai, J.; Wang, Y.; Guerrero, J.M. A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid
**2016**, 9, 2726–2740. [Google Scholar] [CrossRef] [Green Version] - Talapur, G.G.; Suryawanshi, H.M.; Xu LShitole, A.B. A reliable microgrid with seamless transition between grid connected and islanded condition for residential community with enhanced power quality. IEEE Trans. Ind. Appl.
**2018**, 54, 5246–5255. [Google Scholar] [CrossRef] [Green Version] - Rajesh, K.S.; Dash, S.S.; Rajagopal, R.; Sridhar, R. A review on control of ac microgrid. Renew. Sustain. Energy Rev.
**2017**, 71, 814–819. [Google Scholar] [CrossRef] - Khajesalehi, J.; Sheshyekani, K.; Hamzeh, M.; Afjei, E. High-performance hybrid photovoltaic-battery system based on quasi-Z-source inverter: Application in microgrids. IET Gener. Transm. Distrib.
**2015**, 9, 895–902. [Google Scholar] [CrossRef] - Youssef, K.H. Power quality constrained optimal management of unbalanced smart microgrids during scheduled multiple transitions between grid-connected and islanded conditions. IEEE Trans. Smart Grid
**2016**, 8, 457–464. [Google Scholar] [CrossRef] - Cai, H.; Hu, G. Distributed robust hierarchical power sharing control of grid-connected spatially concentrated AC microgrid. IEEE Trans. Control Syst. Technol.
**2018**, 27, 1012–1022. [Google Scholar] [CrossRef] - Vodyakho, O.; Mi, C.C. Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems. IEEE Trans. Power Electron.
**2009**, 24, 1350–1363. [Google Scholar] [CrossRef] - Terriche, Y.; Guerrero, J.M.; Vasquez, J.C. Performance improvement of shunt active power filter based on non-linear least-square approach. Electr. Power Syst. Res.
**2018**, 160, 44–55. [Google Scholar] [CrossRef] - Xiaojing, C.; Kaicheng, L.; Qingxu, M.; Delong, C.; Yi, L. Detection of Power Quality Disturbances using Empirical Wavelet Transform and Hilbert Transform. J. Electr. Electron. Eng.
**2017**, 5, 192–197. [Google Scholar] [CrossRef] - Esfetang, N.N.; Kazemzadeh, R. A novel hybrid technique for prediction of electric power generation in wind farms based on Wipower Systemo, neural network and wavelet transform. Energy
**2018**, 149, 662–674. [Google Scholar] [CrossRef] - Ray, P.K.; Panigrahi, B.K.; Rout, P.K.; Mohanty, A.; Eddy, F.Y.; Gooi, H.B. Detection of islanding and fault disturbances in microgrid using wavelet packet transform. IETE J. Res.
**2018**, 1, 1–4. [Google Scholar] [CrossRef] - Kumar, R.; Singh, B.; Shahani, D.T.; Jain, C. Dual-tree complex wavelet transform-based control technique for power quality improvement in a distribution system. IEEE Trans. Ind. Electron.
**2016**, 64, 764–772. [Google Scholar] [CrossRef] - Agarwal, R.K.; Hussain, I.; Singh, B. LMF-based control technique for single stage three-phase grid integrated solar PV system. IEEE Trans. Sustain. Energy
**2016**, 7, 1379–1387. [Google Scholar] [CrossRef] - Pahari, O.P.; Subudhi, B. Integral sliding condition-improved adaptive MPPT control scheme for suppressing grid current harmonics for PV system. IET Renew. Power Gener.
**2018**, 12, 1904–1914. [Google Scholar] [CrossRef] - Zainuri, M.A.; Radzi, M.A.; Soh, A.C.; Rahim, N.A. Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost DC–DC converter. IET Renew. Power Gener.
**2013**, 8, 183–194. [Google Scholar] [CrossRef] - Yousri, D.; Babu, T.S.; Allam, D.; Ramachandaramurthy, V.K.; Beshr, E.; Eteiba, M.B. Fractional chaos maps with flower pollination algorithm for partial shading mitigation of photovoltaic systems. Energies
**2019**, 12, 3548. [Google Scholar] [CrossRef] [Green Version] - Huynh, D.C.; Dunnigan, M.W. Development and Comparison of an Improved Incremental Conductance Technique for Tracking the MPP of a Solar PV Panel. IEEE Trans. Sustain. Energy
**2016**, 7, 1421–1429. [Google Scholar] [CrossRef] - Babu, T.S.; Yousri, D.; Balasubramanian, K. Photovoltaic array reconfiguration system for maximizing the harvested power using population-based algorithms. IEEE Access
**2020**, 8, 109608–109624. [Google Scholar] [CrossRef] - Xu, Z.R.; Yang, P.; Zhou, D.B.; Li, P.; Lei, J.Y.; Chen, Y.R. An improved variable step-size MPPT technique based on INC. J. Power Electron.
**2015**, 15, 487–496. [Google Scholar] [CrossRef] [Green Version] - Xiao, F.; Lu, T.; Wu, M.; Ai, Q. Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance. IET Gener. Transm. Distrib.
**2019**, 14, 140–147. [Google Scholar] [CrossRef] - Percival, D.B.; Walden, A.D. Wavelet Methods for Time Series Analysis, 1st ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Alves, D.K.; Costa, F.B.; de Araujo Ribeiro, R.L.; de Sousa Neto, C.M.; Rocha, T. Real-time power measurement using the maximal overlap discrete wavelet-packet transform. IEEE Trans. Ind. Electron.
**2016**, 64, 3177–3187. [Google Scholar] [CrossRef]

**Figure 1.**Proposed microgrid integrated power system network, DBC—DC-DC boost converter, BDC—bi-directional converter, PCC—point od coupling contact, MPPT—maximum power extraction technique.

**Figure 2.**Flowchart showing working of an microgrid (MG) integrated hybrid shunt active power filter (HSAPF) interfaced with utility network.

**Figure 3.**Block diagram of maximum power point tracking (MPPT) controller in photovoltaic (PV) and wind turbine (WT) system.

**Figure 4.**The control scheme for the learning-based incremental conductance (LINC) technique in grid-tied PV and WT system.

**Figure 6.**(

**a**) Proposed advanced maximal overlap discrete wavelet packet transform (AMDWPT) based, (

**b**) block condition of AMDWPT technique.

**Figure 7.**Dynamic performance under a change in wind speed and solar irradiations with the state of battery charge (SOC) percentage less than 100%. Simulation results showing (

**a**) load voltage, wind turbine current, load current, filter current, real and reference PV current, colors blue, green, red represents phase a, b, and c for VL, similarly for IWT colors green, red, blue indicates -phase a, b, c; for iL red, blue and green for phase-a, b and c; Brown, red and blue for phase a, b and c of iFtr; blue, red shows IPV, IPVref. (

**b**) mechanical torque, wind speed, DC link voltage, and SOC percentage.

**Figure 8.**Steady-state performance under balanced non-linear loads showing (

**a**) load voltage, WT current, filter current, load current, DC link voltage, the colors red, blue and green represents phase a, b and c (

**b**) mechanical torque, wind speed, real and reference PV current, and SOC percentage colors blue, red represents IPV and IPVref.

**Figure 9.**Steady-state performance under un-balanced non-linear loads showing (

**a**) load voltage, WT current, filter current, load current, DC link voltage, colors red, blue and green represents phase a, b and c. (

**b**) mechanical torque, wind speed, real and reference PV current, and SOC percentage colors blue, red indicates IPV, IPVref.

**Figure 10.**A comparative graphic showing the percentage THD analysis of the proposed system with DWPT.

**Figure 11.**Performance of the proposed system when SOC percentage is equal to 100%.colors blue, green red represents phase a, b, and c respectively.

Load Scenario | DWPT | AMDWPT |
---|---|---|

Balanced load | 2.58 | 2.11 |

Unbalanced load | 4.87 | 3.95 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Das, S.R.; Ray, P.K.; Sahoo, A.K.; Ramasubbareddy, S.; Babu, T.S.; Kumar, N.M.; Haes Alhelou, H.; Siano, P.
Performance of Hybrid Filter in a Microgrid Integrated Power System Network Using Wavelet Techniques. *Appl. Sci.* **2020**, *10*, 6792.
https://doi.org/10.3390/app10196792

**AMA Style**

Das SR, Ray PK, Sahoo AK, Ramasubbareddy S, Babu TS, Kumar NM, Haes Alhelou H, Siano P.
Performance of Hybrid Filter in a Microgrid Integrated Power System Network Using Wavelet Techniques. *Applied Sciences*. 2020; 10(19):6792.
https://doi.org/10.3390/app10196792

**Chicago/Turabian Style**

Das, Soumya Ranjan, Prakash K. Ray, Arun Kumar Sahoo, Somula Ramasubbareddy, Thanikanti Sudhakar Babu, Nallapaneni Manoj Kumar, Hassan Haes Alhelou, and Pierluigi Siano.
2020. "Performance of Hybrid Filter in a Microgrid Integrated Power System Network Using Wavelet Techniques" *Applied Sciences* 10, no. 19: 6792.
https://doi.org/10.3390/app10196792