Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Crumb Rubber
2.1.3. Stabilizer
2.2. Sample Preparation
2.3. Experimental Methods
3. Results and Discussion
3.1. Effect of Different CR Content on the Performance of AR
3.1.1. 90# Matrix Asphalt
3.1.2. 70# Matrix Asphalt
3.2. Effect of Stabilizers on the Performance of AR
3.3. Effect of Different Production Methods on AR
SEM Test of AR
3.4. Rheological Properties of AR
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, O.; Zhang, H.; Cao, Z. Pavement Performance of Asphalt Mixtures with Economical Low Content Crumb Rubber Modified Asphalt. J. Chongqing Jiao Tong Univ. (Nat. Sci.) 2019, 5, 52–56. [Google Scholar]
- Cao, Q. Thoughts on High Quality Development of Recycled Rubber in China. China Rubber. 2018, 12, 14–16. [Google Scholar]
- Irfan, M.; Ali, Y.; Ahmed, S.; Hafeez, I. Performance Evaluation of Crumb Rubber-Modified Asphalt Mixtures Based on Laboratory and Field Investigations. Arab. J. Sci. Eng. 2017, 43, 1–12. [Google Scholar] [CrossRef]
- Li, H.B.; Dong, B.; Zhao, D. Physical, Rheological and Stability Properties of Desulfurized Rubber Asphalt and Crumb Rubber Asphalt. Arab. J. Sci. Eng. 2019, 44, 5043–5056. [Google Scholar] [CrossRef]
- Xiao, F.P.; Wang, T.; Wang, J.Y.; Su, N.Y.; Hou, X.D.; Chen, J.; Liu, J. Mechanism and Research Development of Noise Reduction Technology of Rubberized Asphalt Pavement. China J. Highw. Transp. 2019, 32, 73–91. [Google Scholar]
- Gong, F.; Guo, S.; Chen, S.; You, Z.; Liu, Y.; Dai, Q. Strength and durability of dry-processed stone matrix asphalt containing cement pre-coated scrap tire rubber particles. Constr. Build. Mater. 2019, 214, 62–74. [Google Scholar] [CrossRef]
- Yu, B.; Jiao, L.; Ni, F. Evaluation of plastic–rubber asphalt: Engineering property and environmental concern. Constr. Build. Mater. 2014, 71, 416–424. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, H.; Geng, J.; Tian, Y.; Li, Z.; Xiong, R. Production and performance of desulfurized rubber asphalt binder. Int. J. Pavement Res. Technol. 2017, 10, 262–273. [Google Scholar] [CrossRef]
- Pang, L.; Liu, K.; Wu, S.; Lei, M.; Chen, Z. Effect of LDHs on the aging resistance of crumb rubber modified asphalt. Constr. Build. Mater. 2014, 67, 239–243. [Google Scholar] [CrossRef]
- Zhou, H.; Holikatti, S.; Vacura, P. Caltrans use of scrap tires in asphalt rubber products: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2014, 1, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xiao, F.P.; Zhu, X.Y.; Huang, B.S.; Wang, J.G.; Amirkhanian, S. Energy consumption and environmental impact of rubberized asphalt pavement. J. Clean. Prod. 2018, 180, 139–158. [Google Scholar] [CrossRef]
- Amini, A.; Imaninasab, R. Investigating the effectiveness of Vacuum Tower Bottoms for Asphalt Rubber Binder based on performance properties and statistical analysis. J. Clean. Prod. 2018, 171, 1101–1110. [Google Scholar] [CrossRef]
- Ding, X.H.; Ma, T.; Zhang, W.G.; Zhang, D.Y. Experimental study of stable crumb rubber asphalt and asphalt mixture. Constr. Build. Mater. 2017, 157, 975–981. [Google Scholar] [CrossRef]
- Souliman, M.I.; Eifert, A. Mechanistic and Economical Characteristics of Asphalt Rubber Mixtures. Adv. Civ. Eng. 2016, 11, 10–17. [Google Scholar] [CrossRef]
- Venudharan, V.; Biligiri, K.P.; Das, N.C. Investigations on behavioral characteristics of asphalt binder with crumb rubber modification: Rheological and thermo-chemical approach. Constr. Build. Mater. 2018, 181, 455–464. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Liu, Z. Study on the road performance of warm mixed rubber asphalt mixture gradations. J. Xian Univ. Archit. Technol. 2018, 50, 895–900. [Google Scholar]
- Dong, R.K.; Qi, C.P.; Zheng, K.J.; Zhao, M.Z. Test on Low-temperature Performance for High-temperature Pyrolytic Rubber Modified Asphalt. China J. Highw. Transp. 2017, 30, 32–38. [Google Scholar]
- Yu, R.; Liu, X.; Zhang, M.; Zhu, X.; Fang, C. Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt. J. China Highw. Constr. Build. Mater. 2017, 156, 284–292. [Google Scholar] [CrossRef]
- Tang, N.; Huang, W.; Xiao, F. Chemical and rheological investigation of high-cured crumb rubber-modified asphalt. Constr. Build. Mater. 2016, 123, 847–854. [Google Scholar] [CrossRef]
- Kocak, S.; Kutay, M.E. Use of crumb rubber in lieu of binder grade bumping for mixtures with high percentage of reclaimed asphalt pavement. Road Mater. Pavement Des. 2017, 18, 116–129. [Google Scholar] [CrossRef]
- Hajikarimi, P.; Rahi, M.; Nejad, F.M. Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders. Road Mater. Pavement Des. 2015, 16, 1–16. [Google Scholar] [CrossRef]
- Lertloypanyachai, P.; Thongsang, S. Improving the mechanical properties of rubber floor tiles by rock powder particle as filler in natural rubber. Mater. Today: Proc. 2018, 5, 14907–14911. [Google Scholar] [CrossRef]
- Xiao-yan, L.I.; Lu, P.I.; Hai-nian, W.A.; Chen, Z.H.; Zhan-ping, Y.O. Performance test of rubber asphalt based on domestic and abroad test methods. J. Traffic Transp. Eng. 2015, 15, 10–17. [Google Scholar]
- Xie, B.Z.; Du, S.J.; Cai, L.; Mu, J.Q.; Wang, H. Research on the Influences of Mesh Number of Rubber Powder and Temperature on the Performance Properties of the Rubber Asphalt. North. Commun. 2018, 9, 44–48. [Google Scholar]
- Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Changes in composition and molecular structure of asphalt in mixing with crumb rubber modifier. Road Mater. Pavement Des. 2016, 17, 906–919. [Google Scholar] [CrossRef]
- Ghavibazoo, A.; Abdelrahman, M. Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binde. Int. J. Pavement Eng. 2013, 14, 517–530. [Google Scholar] [CrossRef]
- Ghavibazoo, A. Characterization of activities of crumb rubber in interaction with asphalt and its effect on final properties. Diss. Theses Gradworks 2014, 17, 259–264. [Google Scholar]
- Xuanrui, G. Research on the influence factors of asphalt rubber mixture fatigue performance. In Proceedings of the C. 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqin, China, 28 May 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Egami, K.; Kimura, M.; Hamaguchi, T. Effect of Crumb Rubber Modifier Dissolution on Storage Stability of Crumb Rubber–Modified Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2013, 2370, 109–115. [Google Scholar]
- Han, S. Effect of stirring method and stirring temperature on the performance of rubber asphalt. Highw. Automot. Appl. 2013, 11, 96–99. [Google Scholar]
- Chen, H.; Liu, G.; Qin, J. Study on Rheological Properties of Microwave Activated Crumb Rubber Modified Asphalt. J. Wuhan Univ. Technol. 2018, 42, 154–158. [Google Scholar]
- Fang, S.; Zhang, G.T.; Ye, F. Study on rheological and microscopic properties of rubber asphalt based on activation temperature. Highw. Eng. 2019, 44, 63–66. [Google Scholar]
- Zhao, X.D. Study on anti cracking performance of crumb rubber asphalt. Highw. Transp. Technol. (Appl. Technol. Ed.) 2019, 15, 10–12. [Google Scholar]
- Cui, Y.N.; Zhao, L.; Han, J.W.; Sun, G.N. High temperature rheological properties and microstructures of asphalt under salt freezing cycles. Acta Mater. Compos. Sin. 2017, 34, 1839–1846. [Google Scholar]
- Al-Omari, A.; Taamneh, M.; Khasawneh, M.; Al-Hosainat, A. Effect of crumb tire rubber, microcrystalline synthetic wax, and nano silica on asphalt rheology. Road Mater. Pavement Des. 2020, 21, 757–779. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W.; Yang, G.; Han, L.; Xing, B.; Lv, X. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr. Build. Mater. 2020, 235, 117517. [Google Scholar] [CrossRef]
- Chang, R.; Hao, P.W. Rheological properties and modification mechanism of RET compound rubber modified asphalt. Mater. Rev. 2016, 30, 130–136. [Google Scholar] [CrossRef]
Pilot Projects | Standard | SK90# | Standard | SK70# | AH70# | Experiment Method | |
---|---|---|---|---|---|---|---|
Measured Value | Measured Value | ||||||
Penetration/0.1 mm | 90–100 | 91.1 | 60–80 | 66 | 72 | T0604 | |
Ductility (15 °C)/cm | ≥100 | >100 | ≥100 | >120 | >120 | T0605 | |
Softening Point/°C | ≥45 | 46.35 | ≥46 | 48 | 46 | T0606 | |
RTFOT (163 °C) | Quality loss/% | 0.8 | 0.24 | 0.8 | 0.08 | 0.15 | T0609 |
Residual penetration ratio/% | 72 | 74 | 77 | T0604 | |||
Residual ductility (10 °C)/cm | 8 | 19 | 7 | 8 | T0605 |
Test Items | Relative Density (g/cm3) | Moisture Content (%) | Metal Content (%) | Fiber Content (%) | Natural Rubber Content (%) |
---|---|---|---|---|---|
Measured value | 1.24 | N/A | N/A | 0.3 | 37 |
Standard Value | 1.10–1.3 | <0.75 | <0.01 | <0.5 | 25 |
Test Items | Ash Content (%) | Acetone Extract (%) | Carbon Black Content (%) | Rubber Hydrocarbon Content (%) |
---|---|---|---|---|
Measured value | 7 | 7 | 28 | 55 |
Standard Value | ≤8 | ≤22 | ≥28 | ≥42 |
Index | ZB-01 | HMD-1 | HMD-2 |
---|---|---|---|
Appearance | Grayish Black or Yellowish Solid Fine Powder | Yellow Black or Yellowish Solid Fine Powder | Yellow Black or Yellowish Solid Fine Powder |
Active ingredient content (%) | ≥95 | ≥95 | ≥95 |
Apparent density (g/cm3) | 0.9–1.2 | 0.6–0.8 | 0.5–0.7 |
Melting point (°C) | ≥110 | ≥90 | ≥110 |
Fineness (80 mesh sieve residue) (%) | ≤2 | ≤2 | ≤2 |
Moisture (%) | ≤0.5 | ≤0.5 | ≤0.5 |
Add amount (‰) | 1–3 | 2–5 | 2–5 |
Add temperature (°C) | 185–195 | 180–190 | 185–195 |
Number | Matrix Asphalt | Rubber Powder (Proportion) | Stabilizer |
---|---|---|---|
A-0 | SK -70# | 20% | Not added |
A-1 | SK -70# | 20% | 1# |
A-1 | SK -70# | 20% | 2# |
A-3 | SK -70# | 20% | 3# |
B-0 | AH-70# | 20% | Not added |
B-1 | AH -70# | 20% | 1# |
B-2 | AH -70# | 20% | 2# |
B-3 | AH -70# | 20% | 3# |
Properties | Penetration (0.1 mm) | Softening Point (°C) | Ductility (cm) | Elastic Recovery (%) | 180 °C Rotational Viscosity (Pa⋅s) | |
---|---|---|---|---|---|---|
Proportion | ||||||
15% | 55.2 | 58.67 | 5.8 | 55.00 | 0.486 | |
17.5% | 52.67 | 59.55 | 7.27 | 71.00 | 0.877 | |
20% | 51.23 | 59.15 | 7.9 | 73 | 1.497 | |
22.5% | 63.77 | 60.55 | 8.53 | 71.67 | 1.494 | |
25% | 70.27 | 61.65 | 10.37 | 81.00 | 4.464 | |
Technical standard | 60–80 | >58 | >10 | >55 | 1~4 |
Properties | Penetration (0.1 mm) | Softening Point (°C) | Ductility (cm) | Elastic Recovery (25 °C) | 180 °C Rotational Viscosity (Pa·s) | |
---|---|---|---|---|---|---|
Proportion | ||||||
16% | 46.5 | 62 | 6.7 | 75.00% | 0.8 | |
18% | 42.6 | 64.5 | 7.4 | 78.30% | 1.4 | |
20% | 44.1 | 63.5 | 7.7 | 83.70% | 1.8 | |
22% | 39.3 | 65.5 | 8.2 | 82.30% | 2.5 | |
24% | 55.4 | 66.5 | 8.9 | 82.50% | 2.8 | |
26% | 57.2 | 65.5 | 8.8 | 83.00% | 3.4 | |
28% | 51.6 | 70 | 7.7 | 81.60% | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, W.; Temitope, A.A.; Zhao, D.; Zhao, G.; Ma, Q. Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber. Appl. Sci. 2020, 10, 5447. https://doi.org/10.3390/app10165447
Li H, Li W, Temitope AA, Zhao D, Zhao G, Ma Q. Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber. Applied Sciences. 2020; 10(16):5447. https://doi.org/10.3390/app10165447
Chicago/Turabian StyleLi, Haibin, Wenbo Li, Ahmed Abdulakeem Temitope, Dong Zhao, Guijuan Zhao, and Qingwei Ma. 2020. "Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber" Applied Sciences 10, no. 16: 5447. https://doi.org/10.3390/app10165447
APA StyleLi, H., Li, W., Temitope, A. A., Zhao, D., Zhao, G., & Ma, Q. (2020). Analysis of the Influence of Production Method, Crumb Rubber Content and Stabilizer on the Performance of Asphalt Rubber. Applied Sciences, 10(16), 5447. https://doi.org/10.3390/app10165447