Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel
Abstract
1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Classical MD Simulations
2.3. Quantum Mechanical Simulations
3. Results
3.1. Classical MD Simulations
3.2. Quantum Mechanical Motion of a K+ Ion
3.2.1. Coherence of the Wave Function
3.2.2. The Effect of QM Coherence on K+ Conductance
3.3. Temporal Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Numerical Parameters of the Particles and of the Selectivity Filter
Particle A | Particle B | dAB [pm] | frep,AB (Units of kBT/dAB) | Comment |
---|---|---|---|---|
K+ | K+ | - | - | Very strong Coulomb repulsion, no additional repulsion needed |
K+ | O (central charge) | 131 | 500 | This repulsion hardly comes to play, because the K+ remain on the central axis of the SF. |
K+ | O (lone pairs charge) | 248 | 100 | Plays an important role for keeping a K+ coordinated at a site. |
K+ | H2O | 192.5 | 1000 | Determines how close an H2O can get attached to a K+ while following it through the SF. |
O (central charge) | H2O | 137.5 | 500 | This repulsion hardly comes to play, because the H2O molecules remain on the central axis of the SF. |
O (lone pairs charge) | H2O | 137.48 | 350 | Represents an occasional barrier for an H2O to pass on, depending on how it is oriented. |
H2O | H2O | 137.5 | 500 | The Coulomb force acts between the three charges of each H2O. The distance for repulsion is given by the distance between the charge centers. |
Appendix A.2. Additional Aspects about MD Simulations
Appendix A.3. Additional Aspects of Quantum Mechanical Simulations
Appendix A.4. Coherence Calculation
References
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinnauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Kuyucak, S.; Andersen, O.S.; Chung, S.H. Models of permeation in ion channels. Rep. Prog. Phys. 2001, 64, 1427–1471. [Google Scholar] [CrossRef]
- Doyle, D.A.; Cabral, J.M.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77. [Google Scholar] [CrossRef]
- Morais-Cabral, J.H.; Zhou, Y.; MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001, 414, 37–42. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Kelkar, D.A. Ion channels and D-amino acids. J. Biosci. 2005, 30, 147–149. [Google Scholar] [CrossRef]
- Bostick, D.L.; Brooks, C.L., III. Selectivity in K+ channels is due to topological control of the permeant ion’s coordination state. Proc. Natl. Acad. Sci. USA 2007, 104, 9260–9265. [Google Scholar] [CrossRef]
- Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum Dynamics and Non-Local Effects Behind Ion Transition States during Permeation in Membrane Channel Proteins. Entropy 2018, 20, 558. [Google Scholar] [CrossRef]
- Furini, S.; Domene, C. Atypical mechanism of conduction in potassium channels. Proc. Natl. Acad. Sci. USA 2009, 106, 16074–16077. [Google Scholar] [CrossRef] [PubMed]
- Gwan, J.-F.; Baumgaertner, A. Cooperative transport in a potassium ion channel. J. Chem. Phys. 2007, 127, 045103. [Google Scholar] [CrossRef] [PubMed]
- Koepfer, D.A.; Song, C.; Gruene, T.; Sheldrick, G.M.; Zachariae, U.; de Groot, B.L. Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science 2014, 346, 352–355. [Google Scholar] [CrossRef]
- Fowler, P.W.; Abad, E.; Beckstein, O.; Sansom, M.S.P. Energetics of multi-ion conduction pathways in potassium ion channels. J. Chem. Theory Comput. 2013, 9, 5176–5189. [Google Scholar] [CrossRef]
- Sansom, M.S.; Shrivastava, I.H.; Bright, J.N.; Tate, J.; Capener, C.E.; Biggin, P.C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta (BBA) Biomembr. 2002, 156, 294–307. [Google Scholar] [CrossRef]
- Zhou, Y.; Morais-Cabral, J.H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 2001, 414, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Ponder, J.W.; Case, D.A. Force Fields for Protein Simulations. Adv. Protein Chem. 2003, 66, 27–85. [Google Scholar]
- Iwamoto, M.; Oiki, S. Counting Ion and Water Molecules in a Streaming File through the Open-Filter Structure of the K Channel. J. Neurosci. 2011, 31, 12180–12188. [Google Scholar] [CrossRef]
- Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Math. Proc. Camb. Phil. Soc. 1947, 43, 50–67. [Google Scholar] [CrossRef]
- Kopec, W.; Rothberg, B.S.; de Groot, B.L. Molecular mechanism of a potassium channel gating through activation gate-selectivity filter coupling. Nat. Commun. 2019, 10, 5366. [Google Scholar] [CrossRef]
- VanDongen, A.M.J. K channel gating by an affinity-switching selectivity filter. PNAS 101 2004, 9, 3248–3252. [Google Scholar] [CrossRef]
- .Summhammer, J.; Sulyok, G.; Bernroider, G.; Cocchi, M. Forces from Lipids and Ionic Diffusion: Probing Lateral Membrane Effects by an Optimized Filter Region of Voltage Dependent K+ Channels (Preprint 2020). Available online: https://www.researchgate.net/publication/339616148_Forces_from_Lipids_and_Ionic_Diffusion_Probing_lateral_membrane_effects_by_an_optimized_filter_region_of_voltage_dependent_K_channels (accessed on 20 June 2020).
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 2005, 76, 1267–1305. [Google Scholar] [CrossRef]
- Salari, V.; Moradi, N.; Fazileh, F.; Shahbazi, F. Quantum Decoherence Timescales for Ionic Superposition States in Ion Channels. arXiv 2015, arXiv:1410.7304v1. [Google Scholar]
- Salari, V.; Naeij, H.; Shafiee, A. Quantum Interference and Selectivity through Biological Ion Channels. Sci. Rep. 2017, 7, 4162. [Google Scholar] [CrossRef] [PubMed]
- Qaswal, A.B. Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels. Quantum Rep. 2020, 2, 5. [Google Scholar] [CrossRef]
- Maris, H.J. Electrons in Liquid Helium. J. Phys. Soc. Jpn. 2008, 77, 111008. [Google Scholar] [CrossRef]
- Berneche, S.; Roux, B. A gate in the selectivity filter of potassium channels. Structure 2005, 13, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Zipse, H. Charge distribution in the water molecule—A comparison of methods. J. Comput. Chem. 2005, 26, 97–105. [Google Scholar] [CrossRef]
- Ridgeway Scott, L.; Fernandez, A. A Mathematical Approach to Protein Biophysics; Springer: Berlin/Heidelberg, Germany, 2017; p. 121. [Google Scholar]
- Garofoli, S.; Jordan, P.C. Modelling permeation energetics in the KcsA potassium channel. Biophys. J. 2003, 84, 2814–2830. [Google Scholar] [CrossRef]
- Furini, S.; Domene, C. Computational studies of transport in ion channels using metadynamics. Biochim. Biophys. Acta 2016, 1858, 1733–1740. [Google Scholar] [CrossRef]
- Noskov, S.Y.; Bernéche, S.; Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 2004, 431, 830–834. [Google Scholar] [CrossRef]
- Feenstra, K.A.; Hess, B.; Berendsen, J.C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen rich systems. J. Comp. Chem. 1999, 20, 786–798. [Google Scholar] [CrossRef]
- Chung, S.H.; Corry, B. Conduction Properties of KcsA Measured Using Brownian Dynamics with Flexible Carbonyl Groups in the Selectivity Filter. Biophys. J. 2007, 93, 44–53. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel. Appl. Sci. 2020, 10, 4250. https://doi.org/10.3390/app10124250
Summhammer J, Sulyok G, Bernroider G. Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel. Applied Sciences. 2020; 10(12):4250. https://doi.org/10.3390/app10124250
Chicago/Turabian StyleSummhammer, Johann, Georg Sulyok, and Gustav Bernroider. 2020. "Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel" Applied Sciences 10, no. 12: 4250. https://doi.org/10.3390/app10124250
APA StyleSummhammer, J., Sulyok, G., & Bernroider, G. (2020). Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel. Applied Sciences, 10(12), 4250. https://doi.org/10.3390/app10124250