Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (324)

Search Parameters:
Keywords = potassium ion channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 293
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
H+ and Confined Water in Gating in Many Voltage-Gated Potassium Channels: Ion/Water/Counterion/Protein Networks and Protons Added to Gate the Channel
by Alisher M. Kariev and Michael E. Green
Int. J. Mol. Sci. 2025, 26(15), 7325; https://doi.org/10.3390/ijms26157325 - 29 Jul 2025
Viewed by 303
Abstract
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current [...] Read more.
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current is a large movement of positively charged segments of protein from voltage-sensing domains that are mechanically connected to the gate through linker sections of the protein, thus opening and closing the gate. We have pointed out that this mechanism is based on evidence that has alternate interpretations in which protons move. Very little literature considers the role of water and protons in gating, although water must be present, and there is evidence that protons can move in related channels. It is known that water has properties in confined spaces and at the surface of proteins different from those in bulk water. In addition, there is the possibility of quantum properties that are associated with mobile protons and the hydrogen bonds that must be present in the pore; these are likely to be of major importance in gating. In this review, we consider the evidence that indicates a central role for water and the mobility of protons, as well as alternate ways to interpret the evidence of the standard model in which a segment of protein moves. We discuss evidence that includes the importance of quantum effects and hydrogen bonding in confined spaces. K+ must be partially dehydrated as it passes the gate, and a possible mechanism for this is considered; added protons could prevent this mechanism from operating, thus closing the channel. The implications of certain mutations have been unclear, and we offer consistent interpretations for some that are of particular interest. Evidence for proton transport in response to voltage change includes a similarity in sequence to the Hv1 channel; this appears to be conserved in a number of K+ channels. We also consider evidence for a switch in -OH side chain orientation in certain key serines and threonines. Full article
Show Figures

Graphical abstract

15 pages, 3187 KiB  
Article
Cytochrome C-like Domain Within the Human BK Channel
by Taleh Yusifov, Fidan Qudretova and Aysel Aliyeva
Int. J. Mol. Sci. 2025, 26(15), 7053; https://doi.org/10.3390/ijms26157053 - 22 Jul 2025
Viewed by 256
Abstract
Large-conductance, voltage- and calcium-activated potassium (BK) channels are crucial regulators of cellular excitability, influenced by various signaling molecules, including heme. The BK channel contains a heme-sensitive motif located at the sequence 612CKACH616, which is a conserved heme regulatory motif (HRM) [...] Read more.
Large-conductance, voltage- and calcium-activated potassium (BK) channels are crucial regulators of cellular excitability, influenced by various signaling molecules, including heme. The BK channel contains a heme-sensitive motif located at the sequence 612CKACH616, which is a conserved heme regulatory motif (HRM) found in the cytochrome c protein family. This motif is situated within a linker region of approximately 120 residues that connect the RCK1 and RCK2 domains, and it also includes terminal α-helices similar to those found in cytochrome c family proteins. However, much of this region has yet to be structurally defined. We conducted a sequence alignment of the BK linker region with mitochondrial cytochrome c and cytochrome c domains from various hemoproteins to better understand this functionally significant region. In addition to the HRM motif, we discovered that important structural and functional elements of cytochrome c proteins are conserved in the BK RCK1-RCK2 linker. Firstly, the part of the BK region that is resolved in available atomic structures shows similarities in secondary structural elements with cytochrome c domain proteins. Secondly, the Met80 residue in cytochrome c domains, which acts as the second axial ligand to the heme iron, aligns with the BK channel. Beyond its role in electron shuttling, cytochrome c domains exhibit various catalytic properties, including peroxidase activity—specifically, the oxidation of suitable substrates using peroxides. Our findings reveal that the linker region endows human BK channels with peroxidase activity, showing an apparent H2O2 affinity approximately 40-fold greater than that of mitochondrial cytochrome c under baseline conditions. This peroxidase activity was reduced when substitutions were made at 612CKACH616 and other relevant sites. These results indicate that the BK channel possesses a novel module similar to the cytochrome c domains of hemoproteins, which may give rise to unique physiological functions for these widespread ion channels. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 602 KiB  
Review
Genetic Basis of Brugada Syndrome
by Xianghuan Xie, Yanghui Chen, Zhiqiang Li, Yang Sun and Guangzhi Chen
Biomedicines 2025, 13(7), 1740; https://doi.org/10.3390/biomedicines13071740 - 16 Jul 2025
Viewed by 465
Abstract
Brugada syndrome is a rare inherited heart disease characterized by ventricular arrhythmias and characteristic ST segment elevation, which increases the risk of sudden death. Studies have shown that the pathogenesis of this disease involves a variety of gene mutations, including abnormal functions of [...] Read more.
Brugada syndrome is a rare inherited heart disease characterized by ventricular arrhythmias and characteristic ST segment elevation, which increases the risk of sudden death. Studies have shown that the pathogenesis of this disease involves a variety of gene mutations, including abnormal functions of sodium, calcium, and potassium ion channels, resulting in cardiac electrophysiological disorders. These variants affect excitability and conduction of cardiomyocytes, thereby increasing the susceptibility to ventricular arrhythmias and sudden death. However, many genetic variants remain of uncertain significance or are insufficiently characterized, necessitating further investigation. This review summarizes the genetic variants associated with Brugada syndrome and discusses their potential implications for improving diagnosis and therapeutic approaches. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 2007 KiB  
Review
Modulation of Redox-Sensitive Cardiac Ion Channels
by Razan Orfali, Al Hassan Gamal El-Din, Varnika Karthick, Elisanjer Lamis, Vanna Xiao, Alena Ramanishka, Abdullah Alwatban, Osama Alkhamees, Ali Alaseem, Young-Woo Nam and Miao Zhang
Antioxidants 2025, 14(7), 836; https://doi.org/10.3390/antiox14070836 - 8 Jul 2025
Viewed by 586
Abstract
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function [...] Read more.
Redox regulation is crucial for the cardiac action potential, coordinating the sodium-driven depolarization, calcium-mediated plateau formation, and potassium-dependent repolarization processes required for proper heart function. Under physiological conditions, low-level reactive oxygen species (ROS), generated by mitochondria and membrane oxidases, adjust ion channel function and support excitation–contraction coupling. However, when ROS accumulate, they modify a variety of important channel proteins in cardiomyocytes, which commonly results in reducing potassium currents, enhancing sodium and calcium influx, and enhancing intracellular calcium release. These redox-driven alterations disrupt the cardiac rhythm, promote after-depolarizations, impair contractile force, and accelerate the development of heart diseases. Experimental models demonstrate that oxidizing agents reduce repolarizing currents, whereas reducing systems restore normal channel activity. Similarly, oxidative modifications of calcium-handling proteins amplify sarcoplasmic reticulum release and diastolic calcium leak. Understanding the precise redox-dependent modifications of cardiac ion channels would guide new possibilities for targeted therapies aimed at restoring electrophysiological homeostasis under oxidative stress, potentially alleviating myocardial infarction and cardiovascular dysfunction. Full article
Show Figures

Graphical abstract

19 pages, 2479 KiB  
Article
Yoda1 Inhibits TGFβ-Induced Cardiac Fibroblast Activation via a BRD4-Dependent Pathway
by Perwez Alam, Sara M. Stiens, Hunter J. Bowles, Hieu Bui and Douglas K. Bowles
Cells 2025, 14(13), 1028; https://doi.org/10.3390/cells14131028 - 4 Jul 2025
Viewed by 645
Abstract
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart [...] Read more.
Fibrosis represents a pivotal pathological process in numerous diseases, characterized by excessive deposition of extracellular matrix (ECM) that disrupts normal tissue architecture and function. In the heart, cardiac fibrosis significantly impairs both structural integrity and functional capacity, contributing to the progression of heart failure. Central to this process are cardiac fibroblasts (CFs), which, upon activation, differentiate into contractile myofibroblasts, driving pathological ECM accumulation. Transforming growth factor-beta (TGFβ) is a well-established regulator of fibroblast activation; however, the precise molecular mechanisms, particularly the involvement of ion channels, remain poorly understood. Emerging evidence highlights the regulatory role of ion channels, including calcium-activated potassium (KCa) channels, in fibroblast activation. This study elucidates the role of ion channels and investigates the mechanism by which Yoda1, an agonist of the mechanosensitive ion channel Piezo1, modulates TGFβ-induced fibroblast activation. Using NIH/3T3 fibroblasts, we demonstrated that TGFβ-induced activation is regulated by tetraethylammonium (TEA)-sensitive potassium channels, but not by specific K⁺ channel subtypes such as BK, SK, or IK channels. Intriguingly, Yoda1 was found to inhibit TGFβ-induced fibroblast activation through a Piezo1-independent mechanism. Transcriptomic analysis revealed that Yoda1 modulates fibroblast activation by altering gene expression pathways associated with fibrotic processes. Bromodomain-containing protein 4 (BRD4) was identified as a critical mediator of Yoda1’s effects, as pharmacological inhibition of BRD4 with JQ1 or ZL0454 suppressed TGFβ-induced expression of the fibroblast activation marker Periostin (Postn). Conversely, BRD4 overexpression attenuated the inhibitory effects of Yoda1 in both mouse and rat CFs. These results provide novel insights into the pharmacological modulation of TGFβ-induced cardiac fibroblast activation and highlight promising therapeutic targets for the treatment of fibrosis-related cardiac pathologies. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

13 pages, 1167 KiB  
Article
A New High Penetrant Intronic Pathogenic Variant Related to Long QT Syndrome Type 2
by Manuel Rodríguez-Junquera, Alberto Alén, Francisco González-Urbistondo, José Julián Rodríguez-Reguero, Bárbara Fernández, Rut Álvarez-Velasco, Daniel Vazquez-Coto, Lorena M. Vega-Prado, Pablo Avanzas, Eliecer Coto, Juan Gómez and Rebeca Lorca
J. Clin. Med. 2025, 14(13), 4646; https://doi.org/10.3390/jcm14134646 - 1 Jul 2025
Viewed by 373
Abstract
Background/Objectives: Long QT Syndrome type 2 (LQT2) is a cardiac channelopathy linked to pathogenic variants in the KCNH2 gene, which encodes the Kv11.1 potassium channel, essential for cardiac repolarization. Variants affecting splice sites disrupt potassium ion flow, prolong QT interval, and increase [...] Read more.
Background/Objectives: Long QT Syndrome type 2 (LQT2) is a cardiac channelopathy linked to pathogenic variants in the KCNH2 gene, which encodes the Kv11.1 potassium channel, essential for cardiac repolarization. Variants affecting splice sites disrupt potassium ion flow, prolong QT interval, and increase the risk of arrhythmias and sudden cardiac death (SCD). Understanding genotype–phenotype correlations is key, given the variability of clinical manifestations even within families sharing the same variant. We aimed to evaluate new pathogenic variants by analyzing genotype–phenotype correlations in informative families. Methods: Genetic and clinical assessments were performed on index cases and family members carrying KCNH2 pathogenic variants, referred for genetic testing between 2010 and June 2023. The next-generation sequencing (NGS) of 210 cardiovascular-related genes was conducted. Clinical data, including demographic details, family history, arrhythmic events, electrocardiographic parameters, and treatments, were collected. Results: Among 390 patients (152 probands) tested for LQTS, only 2 KCNH2 variants had over 5 carriers. The detailed clinical information of 22 carriers of this KCNH2 p.Ser261fs. has already been reported by our research group. Moreover, we identified 12 carriers of the KCNH2 c.77-2del variant, predicted to disrupt a splice site and not previously reported. Segregation analysis showed its high penetrance, supporting its classification as pathogenic. Conclusions: The newly identified KCNH2 c.77-2del variant is a pathogenic, as strongly supported by the segregation analysis. Our findings underscore the importance of further research into splice site variants to enhance clinical management and genetic counseling for affected families. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

10 pages, 2269 KiB  
Article
Impact of Calcium and Potassium Currents on Spiral Wave Dynamics in the LR1 Model
by Xiaoping Yuan and Qianqian Zheng
Entropy 2025, 27(7), 690; https://doi.org/10.3390/e27070690 - 27 Jun 2025
Viewed by 398
Abstract
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability [...] Read more.
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability of ion channels also plays a significant role in the control of the spiral wave dynamics. We demonstrate that reducing gate variables accelerates wave propagation, thins spiral arms, and shortens action potential duration, ultimately inducing dynamic instability. Irregular electrocardiogram (ECG) patterns and altered action potential morphology further suggest an enhanced arrhythmogenic potential. These findings elucidate the ionic mechanisms underlying spiral wave breakup, providing both theoretical insights and practical implications for the development of targeted arrhythmia treatments. Full article
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Effect of Potassium–Magnesium Sulfate on Intestinal Dissociation and Absorption Rate, Immune Function, and Expression of NLRP3 Inflammasome, Aquaporins and Ion Channels in Weaned Piglets
by Cui Zhu, Kaiyong Huang, Xiaolu Wen, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, Shuting Cao and Li Wang
Animals 2025, 15(12), 1751; https://doi.org/10.3390/ani15121751 - 13 Jun 2025
Viewed by 459
Abstract
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 [...] Read more.
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 involved the assessment of the dissociation rate of PMS in pig digestive fluid and the absorption rate of PMS in the small intestine using an Ussing chamber in vitro. In Experiment 2, 216 healthy 21-day-old weaned piglets were selected and randomly assigned to six groups (0%, 0.15%, 0.30%, 0.45%, 0.60%, and 0.75% PMS), with each group 6 replicates of six piglets per replicate. The in vitro Ussing chamber results indicated that the absorption of K+ and Mg2+ in the jejunum and ileum was significantly higher than that in the duodenum (p < 0.05). The in vivo study demonstrated that the addition of PMS resulted in a linear increase in serum K+, IgG, and interleukin (IL)-2 levels while simultaneously reducing serum IL-1β levels (p < 0.05). Dietary PMS significantly elevated serum IL-10 and Mg2+ levels in feces (p < 0.05). Furthermore, supplementation with 0.60% or 0.75% PMS significantly downregulated the mRNA expression of NLRP3 in the jejunum (p < 0.05). Dietary PMS supplementation linearly reduced the mRNA expression levels of cysteine protease 1 (Caspase-1) and IL-1β in both the jejunum and colon as well as the mRNA expression levels of two-pore domain channel subfamily K member 5 (KCNK5) in these regions (p < 0.05). Notably, supplementation with 0.15% PMS significantly decreased the mRNA expression of transient receptor potential channel 6 (TRPM6) in the jejunum and significantly increased the expression of TRPM6 in the colon (p < 0.05). Dietary addition of 0.45% and 0.60% PMS significantly increased the mRNA expression of aquaporin 3 (AQP3) in the colon (p < 0.05), whereas 0.75% PMS significantly increased the mRNA expression of aquaporin 8 (AQP8) in both the jejunum and colon. Moreover, the expression levels of AQP3 and AQP8 were significantly negatively correlated with the diarrhea rate observed between days 29 and 42. In conclusion, dietary PMS supplementation improved immune function, inhibited the activation of intestinal NLRP3, and modulated the expression of water and ion channels in weaned piglets, thereby contributing to the maintenance of intestinal water and ion homeostasis, which could potentially alleviate post-weaning diarrhea in piglets. The recommended supplemental level of PMS in the corn-soybean basal diet for weaned piglets is 0.30%. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

17 pages, 2067 KiB  
Article
Pro-Arrhythmic Effect of Chronic Stress-Associated Humoral Factors in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
by Shi Su, Jinglei Sun, Suhua Qiu, Wenting Wu, Jiali Zhang, Yi Wang, Chenxia Shi and Yanfang Xu
Biology 2025, 14(6), 652; https://doi.org/10.3390/biology14060652 - 4 Jun 2025
Viewed by 490
Abstract
Under chronic stress, the pro-arrhythmic effect and mechanism of circulating humoral factors in human cardiomyocytes remain unknown. In the present study, we observed the effect of serum from chronic-stress mice on the electrical activity of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Male C57/BL6J [...] Read more.
Under chronic stress, the pro-arrhythmic effect and mechanism of circulating humoral factors in human cardiomyocytes remain unknown. In the present study, we observed the effect of serum from chronic-stress mice on the electrical activity of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Male C57/BL6J mice were subjected to 35 days of chronic unpredictable mild stress (CUMS). The serum from CUMS mice induced arrhythmia-like events (cell arrhythmias) in hiPSC-CMs in a time- and concentration-dependent manner. Patch clamp recordings in the heterologous expression system demonstrated that the serum derived from CUMS mice exerted an inhibitory effect on the cloned human potassium currents (Ito, IKr, IKs) that mediate action potential repolarization. In addition, serum from CUMS reduced the expression of relevant channel proteins. Moreover, both heat-inactivated serum and deproteinized serum evoked similar severity of cell arrhythmias in hiPSC-CMs as the untreated serum, indicating that circulating substances with small molecules were mainly involved in the occurrence of arrhythmias. Furthermore, metabolomics analysis showed that 90 small-molecule metabolites increased and 390 decreased in CUMS serum. We concluded that circulating humoral substances under chronic stress conditions have direct arrhythmogenic effects by inducing ion channel dysfunction in myocardial cells. Full article
Show Figures

Figure 1

19 pages, 2639 KiB  
Article
Cvill6 and Cvill7: Potent and Selective Peptide Blockers of Kv1.2 Ion Channel Isolated from Mexican Scorpion Centruroides villegasi
by Kashmala Shakeel, Muhammad Umair Naseem, Timoteo Olamendi-Portugal, Fernando Z. Zamudio, Lourival Domingos Possani and Gyorgy Panyi
Toxins 2025, 17(6), 279; https://doi.org/10.3390/toxins17060279 - 4 Jun 2025
Viewed by 691
Abstract
Scorpion venoms are a rich source of peptides that modulate the activity of ion channels and can serve as a new drug for channelopathies. Cvill6 and Cvill7 are two new peptides isolated from the venom of Centruroides villegasi with MW of 4277 Da [...] Read more.
Scorpion venoms are a rich source of peptides that modulate the activity of ion channels and can serve as a new drug for channelopathies. Cvill6 and Cvill7 are two new peptides isolated from the venom of Centruroides villegasi with MW of 4277 Da and 4287 Da and they consist of 38 and 39 amino acids, respectively, including six cysteines. Sequence alignment revealed high similarity with members of the α-KTx2 subfamily of potassium channel toxins. In electrophysiology, Cvill7 potently inhibited Kv1.2 ion channels with an IC50 of 16 pM and Kv1.3 with an IC50 of 7.2 nM. In addition, it exhibited partial activity on KCa3.1 and Kv1.1, with ~16% and ~34% inhibition at 100 nM, respectively. In contrast, Cvill6 blocked Kv1.2 with low affinity (IC50 of 3.9 nM) and showed modest inhibition of Kv1.3 (~11%) and KCa3.1 (~27%) at 100 nM concentration. Neither peptide showed any activity against other K+ channels tested in this study (Kv1.5, Kv11.1, KCa1.1, and KCa2.2). Notably, Cvill7 has a remarkable affinity for Kv1.2 and high selectivity of 450-fold over Kv1.3 and 12,000-fold over Kv1.1. These pharmacological properties make Cvill7 a potential candidate to target Kv1.2 gain of function (GOF)-related channelopathies such as epilepsy. Full article
Show Figures

Graphical abstract

43 pages, 2735 KiB  
Review
Voltage-Gated Ion Channels in Neuropathic Pain Signaling
by Ricardo Felix, Alejandra Corzo-Lopez and Alejandro Sandoval
Life 2025, 15(6), 888; https://doi.org/10.3390/life15060888 - 30 May 2025
Viewed by 1259
Abstract
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), [...] Read more.
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), and potassium (KV) channels, play a pivotal role in modulating neuronal excitability and pain signal transmission following nerve injury. This review intends to provide a comprehensive analysis of the molecular and cellular mechanisms by which dysregulation in the expression, localization, and function of specific NaV channel subtypes (mainly NaV1.7 and NaV1.8) and their auxiliary subunits contributes to aberrant neuronal activation, the generation of ectopic discharges, and sensitization in neuropathic pain. Likewise, special emphasis is placed on the crucial role of CaV channels, particularly CaV2.2 and the auxiliary subunit CaVα2δ, whose overexpression increases calcium influx, neurotransmitter release, and neuronal hyperexcitability, thus maintaining persistent pain states. Furthermore, KV channels (particularly KV7 channels) function as brakes on neuronal excitability, and their dysregulation facilitates the development and maintenance of neuropathic pain. Therefore, targeting specific KV channel subtypes to restore their function is also a promising therapeutic strategy for alleviating neuropathic pain symptoms. On the other hand, recent advances in the development of small molecules as selective modulators or inhibitors targeting voltage-gated ion channels are also discussed. These agents have improved efficacy and safety profiles in preclinical and clinical studies by attenuating pathophysiological channel activity and restoring neuronal function. This review seeks to contribute to guiding future research and drug development toward more effective mechanism-based treatments by discussing the molecular mechanisms underlying neuropathic pain and highlighting translational therapeutic opportunities. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

17 pages, 2157 KiB  
Article
Modulation of Kv Channel Gating by Light-Controlled Membrane Thickness
by Rohit Yadav, Juergen Pfeffermann, Nikolaus Goessweiner-Mohr, Toma Glasnov, Sergey A. Akimov and Peter Pohl
Biomolecules 2025, 15(5), 744; https://doi.org/10.3390/biom15050744 - 21 May 2025
Viewed by 702
Abstract
Voltage-gated potassium (Kv) channels are e ssential for shaping action potentials and rely on anionic lipids for proper gating, yet the mechanistic basis of lipid–channel interactions remains unclear. Cryo-electron microscopy studies suggest that, in the down state, arginine residues of the voltage sensor [...] Read more.
Voltage-gated potassium (Kv) channels are e ssential for shaping action potentials and rely on anionic lipids for proper gating, yet the mechanistic basis of lipid–channel interactions remains unclear. Cryo-electron microscopy studies suggest that, in the down state, arginine residues of the voltage sensor draw lipid phosphates upward, leading to a local membrane thinning of ~5 Å—an effect absent in the open state. To test whether membrane thickness directly affects voltage sensor function, we reconstituted Kv channels from Aeropyrum pernix (KvAP) into planar lipid bilayers containing photoswitchable lipids. Upon blue light illumination, the membrane thickened, and KvAP activity increased; UV light reversed both effects. Our findings indicate that membrane thickening weakens the interaction between lipid phosphates and voltage-sensing arginines in the down state, lowering the energy barrier for the transition to the up state and thereby promoting channel opening. This non-genetic, membrane-mediated approach provides a new strategy to control ion channel activity using light and establishes a direct, reversible link between membrane mechanics and voltage sensing, with potential applications in the remote control of neuronal excitability. Full article
Show Figures

Figure 1

18 pages, 4426 KiB  
Article
TWIK Complex Expression in Prostate Cancer: Insights into the Biological and Therapeutic Significances of Potassium Ion Channels in Clinical Cancer
by Abdulaziz Alfahed
Biology 2025, 14(5), 569; https://doi.org/10.3390/biology14050569 - 19 May 2025
Viewed by 638
Abstract
Ion channels play ubiquitous roles in the maintenance of tumour cell homeostasis and hence are attractive targets in the molecular pathogenesis and progression of prostate cancer (PCa). This study aimed to investigate the roles of the potassium ion channel complex TWIK, a member [...] Read more.
Ion channels play ubiquitous roles in the maintenance of tumour cell homeostasis and hence are attractive targets in the molecular pathogenesis and progression of prostate cancer (PCa). This study aimed to investigate the roles of the potassium ion channel complex TWIK, a member of the two-pore-domain potassium channel subfamily, in clinical PCa. The clinicopathological, gene expression, and copy number data of three clinical PCa cohorts from cancer genomics databases were analysed to determine the clinicopathological, biological, and therapeutic significances of the TWIK expression signature using statistical correlations and gene enrichment techniques. The results show that the PCa subset with high TWIK expression exhibited associations with worse pathological tumours, nodes, and overall tumour stages, as well as with high Gleason scores, high prognostic grade groups, and poorer responses to androgen deprivation therapy. Furthermore, a combination of gene set and gene ontology enrichment analyses showed that the PCa subset with high TWIK complex expression was differentially enriched for known oncogenic signalling pathways, aberrant ubiquitination and glucuronidation activities, and for gene sets of ion channel blockers and chemotherapeutic agents. The implications of these findings with respect to cancer progression, therapeutic response, and opportunities for therapeutic targeting of the TWIK complex are discussed, along with the potential of the TWIK complex as a predictive biomarker for integrated, multitargeted therapy. Full article
(This article belongs to the Special Issue Ion Channels in Cancer Progression)
Show Figures

Figure 1

26 pages, 1178 KiB  
Review
The Role of Ion Channels in Cervical Cancer Progression: From Molecular Biomarkers to Diagnostic and Therapeutic Innovations
by Elżbieta Bartoszewska, Melania Czapla, Katarzyna Rakoczy, Michał Filipski, Katarzyna Rekiel, Izabela Skowron, Julita Kulbacka and Christopher Kobierzycki
Cancers 2025, 17(9), 1538; https://doi.org/10.3390/cancers17091538 - 1 May 2025
Cited by 1 | Viewed by 770
Abstract
Ion channels are proteins that regulate the flow of ions across cell membranes, playing a vital role in cervical cancer development and progression. These channels serve as both potential diagnostic markers and therapeutic targets, offering new opportunities for cancer treatment. Moreover, ion channels [...] Read more.
Ion channels are proteins that regulate the flow of ions across cell membranes, playing a vital role in cervical cancer development and progression. These channels serve as both potential diagnostic markers and therapeutic targets, offering new opportunities for cancer treatment. Moreover, ion channels are crucial molecular indicators and possible therapeutic targets due to their role in the development of cervical cancer. Our review focuses on the various types of ion channels which are associated with cervical cancer (CCa), including sodium, calcium, and potassium channels. In our review, we clarify their diagnostic and prognostic value, as well as their relationship to the prognosis and stage of the disease. We also examine how ion channels contribute to the metastasis of cervical cancer, specifically in relation to their influence on cell motility, invasion, and interaction with the tumor microenvironment. By examining preclinical and clinical research involving ion channel blockers and modulators, we also highlight the therapeutic potential of targeting ion channels. We have demonstrated the available assays and imaging methods based on ion channel activity as examples of emerging diagnostic breakthroughs that show promise for enhancing the early detection of cervical cancer. Additionally, the possibility that ion channel modulator-based combination therapy could improve the efficacy of traditional treatments is investigated. To demonstrate the potential of ion channels in cervical cancer diagnosis and treatment, our review highlights the current challenges and the promising role in cervical cancer diagnostics and therapy. Full article
(This article belongs to the Collection Ion Channels in Cancer Therapies)
Show Figures

Figure 1

Back to TopTop