# Wind Turbines Optimal Operation at Time Variable Wind Speeds

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Wind Turbine’s Mathematical Model

## 3. PMSG’s Optimal Power Determination based on the Kinetic Motion Equation

- the first term, which is dependent on the moment of total inertia, ${P}_{inertial}$ is called the “inertial power”,

- the second term, ${P}_{WT}$, which is dependent on the PMSG’s angular speed, $\omega $, and on the wind speed, ${S}_{w}$, as depicted by Equation (1), represents the “wind turbine’s power”.
- the third term, which is dependent on the PMSG’s angular speed, $\omega $, and on the load resistance, represents the PMSG’s power, ${P}_{PMSG}$.

- the first term, ${E}_{0}$, represents the wind energy captured by the wind turbine during the time interval, $\Delta t$,$${E}_{0}={\int}_{{t}_{k-1}}^{{t}_{k}}{P}_{WT}dt=\frac{{P}_{WT\_avg}}{\Delta t}$$
- the second term, ${E}_{E}$, represents the energy delivered by the PMSG to the main grid,$${E}_{E}={\int}_{{t}_{k-1}}^{{t}_{k}}{P}_{PMSG}dt=\frac{{P}_{PMSG\_avg}}{\Delta t}$$
- the third term, ${E}_{kinetic}$, represents the kinetic energy,$${E}_{kinetic}=J{\scriptscriptstyle \frac{{\omega}_{k}^{2}-{\omega}_{k-1}^{2}}{2}}$$

## 4. PMSG’s Optimal Power Control Based on the PI-type Regulator

## 5. PMSG’s Optimal Power Control Based on the PID-type Regulator

## 6. Case Study

#### 6.1. PMSG’s Optimal Power Determination

#### 6.2. PI-Based Control of the PMSG’s Optimal Power

#### 6.3. PID-Based Control of the PMSG’s Optimal Power

- the maximum wind turbine’s power when operating at MPP, defined in Equation (47) (${P}_{WTmax}$)
- the PMSG’s optimal power calculated from the kinetic motion equation, defined in Equation (49) (${P}_{PMSGoptim}\left(t\right)$)
- the PMSG’s power obtained by using either the PI- or PID-type regulators, ${P}_{PMSG\_PI\_PID}\left(t\right)$, resulting from either Equation (62) or Equation (67).

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

## Appendix A

Type | Horizontal Axis Wind Turbine with Variable Rotor Speed |
---|---|

Rotor diameter | 100 m |

Power regulation | Independent electromechanical pitch system for each blade |

Rated power | 2500 kW |

Hub height | 100 m |

Rated rotational speed | 14.05 rpm |

Operating range rotational speed | 3.83–15.61 rpm |

Cut-in wind speed | 3 m/s |

Rated wind speed | 12 m/s |

Cut-out wind speed (10-min mean) | 25 m/s |

Extreme wind speed (50-year mean) | 37.5 m/s |

Annual average wind speed | 7.5 m/s |

Design life time | 20 years |

IEC 61400-1, class | IIIA |

Variable | Description | Units |
---|---|---|

${\mathrm{E}}_{0}$ | delivered energy | (J) |

${\mathrm{E}}_{\mathrm{E}}$ | captured wind energy | (J) |

${\mathrm{E}}_{\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}}$ | kinetic energy | (J) |

$\mathrm{J}$ | total moment of inertia | ($\mathrm{kg}\times {\mathrm{m}}^{2}$) |

${\mathrm{P}}_{\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}}$ | inertial power | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}}$ | PMSG’s power | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}-\mathrm{a}\mathrm{v}\mathrm{g}}$ | PMSG’s average power | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}}$ | PMSG’s optimal power | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}\_\mathrm{P}\mathrm{I}\_\mathrm{P}\mathrm{I}\mathrm{D}}$ | PMSG’s power obtained by using either the PI- or PID-type regulators | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}\_\mathrm{P}\mathrm{I}}$ | PMSG’s power in the case of PI control | (W) |

${\mathrm{P}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}\_\mathrm{P}\mathrm{I}\mathrm{D}}$ | PMSG’s power in the case of PID control | (W) |

${\mathrm{P}}_{\mathrm{W}\mathrm{T}}$ | wind turbine’s power | (W) |

${\mathrm{P}}_{\mathrm{W}\mathrm{T}\_\mathrm{a}\mathrm{v}\mathrm{g}}$ | wind turbine’s average power | (W) |

${\mathrm{P}}_{\mathrm{W}\mathrm{T}\mathrm{max}}$ | wind turbine’s maximum power | (W) |

${\mathrm{T}}_{\mathrm{P}\mathrm{M}\mathrm{S}\mathrm{G}}$ | PMSG’s torque | (Nm) |

${\mathrm{T}}_{\mathrm{W}\mathrm{T}}$ | wind turbine’s torque | (Nm) |

${\mathrm{S}}_{\mathrm{w}}$ | wind speed | (m/s) |

${\mathrm{S}}_{\mathrm{w}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}}$ | measured wind speed | (m/s) |

$\mathrm{\omega}$ | PMSG’s angular speed | (rad/s) |

${\mathrm{\omega}}_{\mathrm{max}}$ | PMSG’s maximum angular speed | (rad/s) |

${\mathsf{\omega}}_{\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{m}}$ | PMSG’s optimal angular speed | (rad/s) |

${\mathsf{\omega}}_{\mathrm{k}}$ | the PMSG’s angular speed at time instant $\mathrm{k}$ | (rad/s) |

${\mathsf{\omega}}_{\mathrm{k}-1}$ | the PMSG’s angular speed at time instant $\mathrm{k}-1$ | (rad/s) |

## References

- Qi, L.; Zheng, L.; Bai, X.; Chen, Q.; Chen, J.; Chen, Y. Chen Nonlinear Maximum Power Point Tracking Control Method for Wind Turbines Considering Dynamics. Appl. Sci.
**2020**, 10, 811. [Google Scholar] [CrossRef] [Green Version] - Sorandaru, C.; Musuroi, S.; Ancuti, M.-C.; Erdodi, G.-M.; Petrescu, D.-I. Equivalent power for a wind power system. In Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 12–14 May 2016; pp. 225–228. [Google Scholar] [CrossRef]
- Sorandaru, C.; Musuroi, S.; Frigura-Iliasa, F.M.; Vatau, D.; Dordescu, M. Analysis of the Wind System Operation in the Optimal Energetic Area at Variable Wind Speed over Time. Sustainability
**2019**, 11, 1249. [Google Scholar] [CrossRef] [Green Version] - Abdullah, M.; Yatim, A.H.; Tan, C.; Saidur, R. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev.
**2012**, 16, 3220–3227. [Google Scholar] [CrossRef] - Hussein, M.M.; Senjyu, T.; Orabi, M.; Wahab, M.A.A.; Hamada, M.M. Control of a Stand-Alone Variable Speed Wind Energy Supply System. Appl. Sci.
**2013**, 3, 437–456. [Google Scholar] [CrossRef] [Green Version] - Yin, M.; Li, W.; Chung, C.Y.; Zhou, L.; Chen, Z.; Zou, Y. Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions. IET Renew. Power Gener.
**2017**, 11, 501–510. [Google Scholar] [CrossRef] - Yang, Z.; Yin, M.; Xu, Y.; Zou, Y.; Dong, Z.Y.; Zhou, Q. Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines. Energies
**2016**, 9, 1023. [Google Scholar] [CrossRef] [Green Version] - Seo, S.; Oh, S.-D.; Kwak, H.-Y. Wind turbine power curve modeling using maximum likelihood estimation method. Renew. Energy
**2019**, 136, 1164–1169. [Google Scholar] [CrossRef] - Marčiukaitis, M.; Žutautaitė, I.; Martišauskas, L.; Jokšas, B.; Gecevičius, G.; Sfetsos, A. Non-linear regression model for wind turbine power curve. Renew. Energy
**2017**, 113, 732–741. [Google Scholar] [CrossRef] - Taslimi-Renani, E.; Delshad, M.M.; Elias, M.F.M.; Rahim, N.A. Development of an enhanced parametric model for wind turbine power curve. Appl. Energy
**2016**, 177, 544–552. [Google Scholar] [CrossRef] - Linus, R.M.; Damodharan, P. Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems. IET Renew. Power Gener.
**2015**, 9, 682–689. [Google Scholar] [CrossRef] - Karabacak, M.; Fernández-Ramírez, L.M.; Kamal, T.; Kamal, S. A New Hill Climbing Maximum Power Tracking Control for Wind Turbines With Inertial Effect Compensation. IEEE Trans. Ind. Electron.
**2019**, 66, 8545–8556. [Google Scholar] [CrossRef] - Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers. Manag.
**2016**, 115, 17–25. [Google Scholar] [CrossRef] - Wei, C.; Zhang, Z.; Qiao, W.; Qu, L. An Adaptive Network-Based Reinforcement Learning Method for MPPT Control of PMSG Wind Energy Conversion Systems. IEEE Trans. Power Electron.
**2016**, 31, 7837–7848. [Google Scholar] [CrossRef] - Navarrete, E.C.; Trejo-Perea, M.; Correa, J.C.J.; Carrillo-Serrano, R.V.; Ríos-Moreno, J.G. Expert Control Systems for Maximum Power Point Tracking in a Wind Turbine with PMSG: State of the Art. Appl. Sci.
**2019**, 9, 2469. [Google Scholar] [CrossRef] [Green Version] - Zuluaga, C.; Álvarez, M.A.; Giraldo, E. Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison. Appl. Energy
**2015**, 156, 321–330. [Google Scholar] [CrossRef] - Beltran, O.; Peña, R.; Ramírez, J.S.; Esparza, A.; Muljadi, E.; Gao, W. Inertia Estimation of Wind Power Plants Based on the Swing Equation and Phasor Measurement Units. Appl. Sci.
**2018**, 8, 2413. [Google Scholar] [CrossRef] [Green Version] - Shang, L.; Hu, J.; Yuan, X.; Chi, Y. Understanding Inertial Response of Variable-Speed Wind Turbines by Defined Internal Potential Vector. Energies
**2016**, 10, 22. [Google Scholar] [CrossRef] - Yang, B.; Yu, T.; Shu, H.; Dong, J.; Jiang, L. Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Appl. Energy
**2018**, 210, 711–723. [Google Scholar] [CrossRef] - Liu, X.; Han, Y.; Wang, C. Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine. IET Renew. Power Gener.
**2017**, 11, 408–418. [Google Scholar] [CrossRef] - Available online: http://www.monsson.eu (accessed on 10 December 2019).

**Figure 1.**Time variations of the approximated wind speed, ${S}_{w}\left(t\right)$, of its derivative, $\frac{d{S}_{w}\left(t\right)}{dt}$, and of the measured the wind speed, ${S}_{wmeas}\left(t\right)$.

**Figure 4.**Time variation of the optimal PMSG‘s power curve, ${P}_{PMSGoptim}\left(t\right)$ for: (

**a**). ${k}_{d}=10000$, (

**b**). ${k}_{d}=1000$, (

**c**). ${k}_{d}=100$, (

**d**). ${k}_{d}=10$, (

**e**). ${k}_{d}=1$, (

**f**). ${k}_{d}=0.1$, (

**g**). ${k}_{d}=0.001$, (

**h**). ${k}_{d}=0.0001$.

**Figure 5.**Time variation of the three power curves: ${P}_{PMSGoptim}\left(t\right)$, ${P}_{PMSG\_PI\_PID}\left(t\right)$ and ${P}_{WTmax}$.

**Figure 6.**Time variation of the PMSG’s angular speed $\omega \left(t\right)$ and of the wind speed derivative $\frac{d{S}_{w}}{dt}\left(t\right)$.

t (s) | S_{wmeas}(t) (m/s) |
---|---|

0 | 6.24 |

30 | 6.25 |

60 | 6.26 |

90 | 6.27 |

120 | 6.28 |

150 | 6.29 |

180 | 6.3 |

210 | 6.31 |

240 | 6.32 |

270 | 6.32 |

300 | 6.32 |

330 | 6.315 |

360 | 6.31 |

390 | 6.29 |

420 | 6.27 |

450 | 6.255 |

480 | 6.24 |

510 | 6.225 |

540 | 6.21 |

570 | 6.14 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ancuti, M.-C.; Musuroi, S.; Sorandaru, C.; Dordescu, M.; Erdodi, G.M.
Wind Turbines Optimal Operation at Time Variable Wind Speeds. *Appl. Sci.* **2020**, *10*, 4232.
https://doi.org/10.3390/app10124232

**AMA Style**

Ancuti M-C, Musuroi S, Sorandaru C, Dordescu M, Erdodi GM.
Wind Turbines Optimal Operation at Time Variable Wind Speeds. *Applied Sciences*. 2020; 10(12):4232.
https://doi.org/10.3390/app10124232

**Chicago/Turabian Style**

Ancuti, Mihaela-Codruta, Sorin Musuroi, Ciprian Sorandaru, Marian Dordescu, and Geza Mihai Erdodi.
2020. "Wind Turbines Optimal Operation at Time Variable Wind Speeds" *Applied Sciences* 10, no. 12: 4232.
https://doi.org/10.3390/app10124232