# Moment-Curvature Behavior of PP-ECC Bridge Piers under Reversed Cyclic Lateral Loading: An Experimental Study

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Program and Setup

#### 2.1. Material Properties of Concrete Mixtures

#### 2.2. Design and Fabrication of Bridge Piers

_{l}is 1.51%. The yield strength and ultimate strength of the longitudinal reinforcement bars were 442.5 and 616.8 MPa, respectively. The steel bar with a diameter of 6 mm is selected for the transverse reinforcement. To study the effect of transverse reinforcement ratio at the plastic hinge region on the seismic behavior of specimens, the bar spacing of transverse reinforcement bars was set to 500, 140, 70 mm within the height of 0.5 m from the top of foundation block. The corresponding volume ratios of transverse reinforcement bars ρ

_{si}were 0%, 0.46%, and 0.79%. The transverse reinforcement bars with a spacing of 70 mm were maintained the same for the upper portion of piers, that is, the volume ratio ρ

_{so}is 0.79% for all specimens. The yield strength and ultimate strength of the transverse reinforcement bar were determined as 440.6 and 612.4 MPa, respectively. The concrete cover was 20 mm for all bridge piers.

#### 2.3. Test Setup and Loading Protocol

_{y}was determined as the critical yield displacement in Step (1). The displacement levels were set to Δ

_{y}, 2Δ

_{y}, 3Δ

_{y}, etc. Each displacement level repeated three times. Finally, the experiment was terminated when the active lateral loading had dropped below 85% of the peak value.

## 3. Results and Discussion

#### 3.1. Crack Patterns and Failure Modes

#### 3.2. Curvature Distribution at the Bottom of the Pier

_{si}are 0.79%, 0.46%, and 0%, respectively. The ultimate curvature values of the pier are determined as 0.3068, 0.2511, and 0.2476 1/m. The results indicate that the transverse reinforcement in the plastic hinge region had a positive influence on the curvature of the pier. With denser stirrups, the bridge pier generally exhibits greater curvature and better resistance to plastic deformation and rotation. The volume hoop ratio of the plastic hinge area at the bottom of the pier has a certain influence on the curvature of the pier: the larger the volume hoop ratio, the greater the final curvature of the pier, and the appropriate increase in PP-ECC in the volume hoop ratio of the plastic hinge area of the pier is beneficial to the plastic rotation of the pier, and then the displacement ductility of the pier is improved. Increasing the volume hoop ratio can increase the constraint capacity of the PP-ECC and increase the ultimate compressive strain and rotation capacity of the pier, so it is beneficial to improve the lateral deformation capacity of the pier.

#### 3.3. Moment-Curvature Behavior

#### 3.4. Reinforcement Bar Behavior

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Data Availability Statement

## References

- Krish, Z.F.; Kowalsky, M.J.; Nau, J.M.; Seracino, R. Repair of Reinforced Concrete Bridge Columns via Plastic Hinge Relocation Volume 1: Repair Using Conventional Materials; Final Report for the Alaska; Department of Transportation & Public Facilities: Juneau, AK, USA; The Federal Highway Administration: Washington, DC, USA, 2018.
- Wardhana, K.; Hadipriono, F.C. Analysis of Recent Bridge Failures in the United States. J. Perform. Constr. Facil.
**2003**, 17, 144–150. [Google Scholar] [CrossRef] [Green Version] - Lin, S.; Xia, Z.; Xia, J. Seismic Damage Model of Bridge Piers Subjected to Biaxial Loading Considering the Impact of Energy Dissipation. Appl. Sci.
**2019**, 9, 1481. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Harries, K.A.; Yuan, W. Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete. Eng. Struct.
**2013**, 48, 255–265. [Google Scholar] [CrossRef] - Yu, Q.; Tao, Z.; Liu, W.; Chen, Z. Analysis and calculations of steel tube confined concrete (STCC) stub columns. J. Constr. Steel Res.
**2010**, 66, 53–64. [Google Scholar] [CrossRef] - Youssf, O.; ElGawady, M.A.; Mills, J.E. Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns. Eng. Struct.
**2015**, 101, 465–476. [Google Scholar] [CrossRef] - Hosseini, F.; Gencturk, B.; Lahpour, S.; Gil, D.I. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu–Al–Mn super-elastic alloys. Smart Mater. Struct.
**2015**, 24, 085029. [Google Scholar] [CrossRef] [Green Version] - Farzad, M.; Shafieifar, M.; Azizinamini, A. Retrofitting of Bridge Columns Using UHPC. J. Bridge Eng.
**2019**, 24, 04019121. [Google Scholar] [CrossRef] - Rutledge, S.T.; Kowalsky, M.; Seracino, R.; Nau, J.M. Repair of Reinforced Concrete Bridge Columns Containing Buckled and Fractured Reinforcement by Plastic Hinge Relocation. J. Bridge Eng.
**2014**, 19, A4013001. [Google Scholar] [CrossRef] - Mostafa, T.; Saiidi, M.S. Low-Damage Precast Columns for Accelerated Bridge Construction in High Seismic Zones. J. Bridge Eng.
**2015**, 21, 04015056. [Google Scholar] - Kawashima, K.; Zafra, R.; Sasaki, T.; Kajiwara, K.; Nakayama, M. Effect of polypropylene fiber reinforced cement composite and steel fiber reinforced concrete for enhancing the seismic performance of bridge columns. J. Earthq. Eng.
**2011**, 15, 1194–1211. [Google Scholar] [CrossRef] - Mohebbi, A.; Saiidi, M.S.; Itani, M.A. Shake Table Studies and Analysis of a PT-UHPC Bridge Column with Pocket Connection. J. Struct. Eng.
**2018**, 144, 04018021. [Google Scholar] [CrossRef] - Zohrevand, P.; Mirmiran, A. Seismic Response of Ultra-High Performance Concrete-Filled FRP Tube Columns. J. Earthq. Eng.
**2013**, 17, 155–170. [Google Scholar] [CrossRef] - Hoang, A.L.; Fehling, E. Analysis of circular steel tube confined UHPC stub columns. Steel Compos. Struct.
**2017**, 23, 669–682. [Google Scholar] [CrossRef] - Yuan, F.; Chen, L.; Chen, M.; Xu, K. Behaviour of Hybrid Steel and FRP-Reinforced Concrete—ECC Composite Columns under Reversed Cyclic Loading. Sensors
**2018**, 18, 4231. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wang, Z.; Wang, J.-Q.; Tang, Y.-C.; Liu, T.-X.; Gao, Y.-F.; Zhang, J. Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters. Eng. Struct.
**2018**, 177, 540–555. [Google Scholar] [CrossRef] - Li, V.C. Tailoring ECC for Special Attributes: A Review. Int. J. Concr. Struct. Mater.
**2012**, 6, 135–144. [Google Scholar] [CrossRef] [Green Version] - Li, V.C. Engineered cementitious composites—Tailored composites through micromechanical modeling. In Fiber Reinforced Concrete: Present and the Future; Banthia, N., Bentur, A., Mufri, A., Eds.; Canadian Society for Civil Engineering: Montreal, QC, Canada, 1998; pp. 64–97. [Google Scholar]
- Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater.
**2015**, 78, 397–404. [Google Scholar] [CrossRef] - Zhang, W.; Yin, C.; Ma, F.; Huang, Z. Mechanical Properties and Carbonation Durability of Engineered Cementitious Composites Reinforced by Polypropylene and Hydrophilic Polyvinyl Alcohol Fibers. Materials
**2018**, 11, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, R.; Matsumoto, K.; Hirata, T.; Ishizeki, Y.; Niwa, J. Application of PP-ECC in beam–column joint connections of rigid-framed railway bridges to reduce transverse reinforcements. Eng. Struct.
**2015**, 86, 146–156. [Google Scholar] [CrossRef] - Yuan, F.; Pan, J.; Dong, L.; Leung, C.K.Y. Mechanical Behaviors of Steel Reinforced ECC or ECC/Concrete Composite Beams under Reversed Cyclic Loading. J. Mater. Civ. Eng.
**2014**, 26, 04014047. [Google Scholar] [CrossRef] - Yang, J.; Liang, S.; Zhu, X.; Sun, C.; Guo, Z. Seismic behavior of precast concrete coupled shear walls with engineered cementitious composite (ECC) in the critical cast-in-place regions. Sci. China Technol. Sci.
**2017**, 60, 1244–1254. [Google Scholar] [CrossRef] - AL-Gemeel, A.N.; Zhuge, Y. Experimental investigation of textile reinforced engineered cementitious composite (ECC) for square concrete column confinement. Constr. Build. Mater.
**2018**, 174, 594–602. [Google Scholar] [CrossRef] - Li, F.; Feng, Z.; Deng, K.; Yu, Y.; Hu, Z.; Jin, H. Axial behavior of reinforced PP-ECC column and hybrid NSC-ECC column under compression. Eng. Struct.
**2019**, 195, 223–230. [Google Scholar] [CrossRef] - Zhang, R.; Matsumoto, K.; Hirata, T.; Ishizeki, Y.; Niwa, J. Shear behavior of polypropylene fiber reinforced ECC beams with varying shear reinforcement ratios. J. JSCE
**2014**, 2, 39–53. [Google Scholar] [CrossRef] [Green Version] - ChiaHwan, Y.; JianBo, H. The Mechanical Behavior of Fiber Reinforced PP ECC Beams under Reverse Cyclic Loading. Adv. Mater. Sci. Eng.
**2014**, 2014, 9. [Google Scholar] [CrossRef] [Green Version] - Zhang, R.; Meng, Q.; Shui, Q.; He, W.; Chen, K.; Liang, M.; Sun, Z. Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges. Compos. Struct.
**2019**, 221, 110844. [Google Scholar] [CrossRef] - Jia, Y.; Zhao, R.; Li, F.; Zhou, Z.; Wang, Y.; Zhan, Y.; Shi, X. Seismic performance of bridge piers constructed with PP-ECC at potential plastic hinge regions. Materials
**2020**, 13, 1865. [Google Scholar] [CrossRef] - Zhang, R. Application of PP-ECC on Rigid-Framed Bridges for Improving Structural Performance. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 2014. [Google Scholar]
- Ma, H.; Xue, J.Y.; Zhang, X.C.; Luo, D.M. Seismic performance of steel-reinforced recycled concrete columns under low cyclic loads. Constr. Build. Mater.
**2013**, 48, 229–237. [Google Scholar] [CrossRef] - Ma, H.; Xue, J.Y.; Liu, Y.H.; Zhang, X.C. Cyclic loading tests and shear strength of steel reinforced recycled concrete short columns. Eng. Struct.
**2015**, 92, 55–68. [Google Scholar] [CrossRef] - Wang, D.Y.; Wang, Z.Y.; Smith, S.T.; Yu, T. Seismic performance of CFRP-confined circular high-strength concrete columns with high axial compression ratio. Constr. Build. Mater.
**2017**, 134, 91–103. [Google Scholar] [CrossRef] - Yuye, Z.; Hongyi, W.; Wancheng, Y. Experimental study on seismic behavior of bridge piers with local application of steel fiber reinforced concrete. J. Vib. Shock
**2012**, 31, 102–107. [Google Scholar] - Yi, J. Research on Seismic Behavior of Bridge Pier Model with Polypropylene-Engineered Cementitious Composite in Plastic Hinge Regions. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2019. [Google Scholar]
- Tong, X.L.; Fang, Z.; Luo, X. Experimental study on seismic behavior of reactive powder concrete shear walls. J. Build. Struct.
**2016**, 37, 21–30. [Google Scholar]

**Figure 5.**(

**a**) Setup of curvature measurement rod and cable-extension transducer at the plastic hinge; (

**b**) Schematic diagram of curvature calculation.

**Figure 8.**Variations between the lateral loading versus vertical displacement of PPECC-1. (

**a**) ZL-1 (15 cm); (

**b**) ZL-2 (30 cm); (

**c**) ZL-3 (60 cm); (

**d**) BL-1 (15 cm); (

**e**) BL-2 (30 cm); (

**f**) BL-3 (60 cm).

**Figure 9.**Curvature distributions along with the height of the pier. (

**a**) PP-ECC-1; (

**b**) PP-ECC-2; (

**c**) PP-ECC-3; (

**d**) PP-ECC-4; (

**e**) PP-ECC-5; (

**f**) PP-ECC-6; (

**g**) RC-7; (

**h**) RC-8.

Fiber Type | Diameter (μm) | Length (mm) | Density (kg/m ^{3}) | Elongation Rate (%) | Elastic Modulus (GPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|

polypropylene | 20 | 12 | 0.91 | >15 | 5 | 480 |

Cement (kg/m ^{3}) | Fly Ash (kg/m ^{3}) | Water (kg/m ^{3}) | PP Fiber (kg/m ^{3}) | Water Reducer (kg/m ^{3}) | w/cm (%) | FA/cm (%) |
---|---|---|---|---|---|---|

820 | 442 | 505 | 18.2 | 8.834 | 0.4 | 0.35 |

Specimen | H (mm) | λ | ρ_{l} (%) | ρ_{so} (%) | ρ_{si} (%) | h (mm) | n |
---|---|---|---|---|---|---|---|

PP-ECC-1 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 250 | 0.1 |

PP-ECC-2 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 500 | 0.1 |

PP-ECC-3 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 250 | 0.3 |

PP-ECC-4 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 500 | 0.3 |

PP-ECC-5 | 2100 | 7.0 | 1.51 | 0.79 | 0.46 | 500 | 0.1 |

PP-ECC-6 | 2100 | 7.0 | 1.51 | 0.79 | 0 | 500 | 0.1 |

RC-7 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 0 | 0.1 |

RC-8 | 2100 | 7.0 | 1.51 | 0.79 | 0.79 | 0 | 0.3 |

_{l}: longitudinal reinforcing ratio; ρ

_{so}: volume ratios of transverse reinforcement bars of non-PP-ECC portion; ρ

_{si}: volume ratios of transverse reinforcement bars of PP-ECC portion; h: height of PP-ECC region; n: axial loading ratio.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jia, Y.; Su, H.; Lai, Z.; Bai, Y.; Li, F.; Zhou, Z.
Moment-Curvature Behavior of PP-ECC Bridge Piers under Reversed Cyclic Lateral Loading: An Experimental Study. *Appl. Sci.* **2020**, *10*, 4056.
https://doi.org/10.3390/app10124056

**AMA Style**

Jia Y, Su H, Lai Z, Bai Y, Li F, Zhou Z.
Moment-Curvature Behavior of PP-ECC Bridge Piers under Reversed Cyclic Lateral Loading: An Experimental Study. *Applied Sciences*. 2020; 10(12):4056.
https://doi.org/10.3390/app10124056

**Chicago/Turabian Style**

Jia, Yi, Hexian Su, Zhengcong Lai, Yu Bai, Fuhai Li, and Zhidong Zhou.
2020. "Moment-Curvature Behavior of PP-ECC Bridge Piers under Reversed Cyclic Lateral Loading: An Experimental Study" *Applied Sciences* 10, no. 12: 4056.
https://doi.org/10.3390/app10124056