Next Article in Journal
Characterization and Production of Extracellular Polysaccharides (EPS) by Bacillus Pseudomycoides U10
Next Article in Special Issue
PCBs in Older Buildings: Measuring PCB Levels in Caulk and Window Glazing Materials in Older Buildings
Previous Article in Journal
Physicochemical and Bacteriological Analysis of Water Quality in Drought Prone Areas of Pune and Satara Districts of Maharashtra, India
Article

Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources

1
CONACYT, Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico
2
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Mexico
3
Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Mexico
*
Author to whom correspondence should be addressed.
Environments 2018, 5(5), 62; https://doi.org/10.3390/environments5050062
Received: 26 April 2018 / Revised: 16 May 2018 / Accepted: 18 May 2018 / Published: 19 May 2018
(This article belongs to the Special Issue Analysis of Environmental Pollutants)
PM2.5 samples were collected from January 2009 to January 2010 at two sampling sites located in the downtown (Centro) and toward the southwest (Miravalle) in the city of Guadalajara, Mexico. The environmental concentrations of 14 selected polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were identified and quantified. The most abundant PAHs in PM2.5 samples were benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, benzo[b]fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene, accounting for approximately 75% of the total PAHs. The total PAH concentrations at the two sampling sites ranged from 0.65 to 19.62 ng·m−3. Spatial variations were found during the dry-warm season, which were attributed mainly to differing intensities of local traffic and less dispersion of air pollutants in Miravalle. Seasonal variations were associated with increases in rainfall (June-September) and differences in temperature (January–May and October–January). The benzo(a)pyrene-equivalent (BaPE) and BaP results suggest that exposure to PM2.5-containing carcinogenic PAHs (C-PAHs) in Miravalle during the warm-dry and cold-dry seasons can be seen as representing a serious risk to human health. The contributions from potential sources to PAHs in PM2.5 were evaluated by the diagnostic ratios between PAHs and principal component analysis (PCA). In the whole sampling period, vehicular emission activity, probably related to light and heavy traffic, was found to be the predominant contributor to PM2.5-bound PAHs. View Full-Text
Keywords: PM2.5; PAHs; source emission; health risks; BaPE PM2.5; PAHs; source emission; health risks; BaPE
Show Figures

Figure 1

MDPI and ACS Style

Murillo-Tovar, M.A.; Barradas-Gimate, A.; Arias-Montoya, M.I.; Saldarriaga-Noreña, H.A. Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments 2018, 5, 62. https://doi.org/10.3390/environments5050062

AMA Style

Murillo-Tovar MA, Barradas-Gimate A, Arias-Montoya MI, Saldarriaga-Noreña HA. Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments. 2018; 5(5):62. https://doi.org/10.3390/environments5050062

Chicago/Turabian Style

Murillo-Tovar, Mario A., Adriana Barradas-Gimate, Mónica I. Arias-Montoya, and Hugo A. Saldarriaga-Noreña 2018. "Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources" Environments 5, no. 5: 62. https://doi.org/10.3390/environments5050062

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop