Ecotoxicity of Fluoxetine Hydrochloride on Aquatic Organisms from Different Taxonomic Groups
Abstract
1. Introduction
2. Materials and Methods
2.1. Ecotoxicological Assay Set-Up
2.2. Sensitivity Test
2.3. Aliivibrio fischeri Bioluminescence Inhibition Assay
2.4. Microcystis novacekii and Chlorella vulgaris Growth Inhibition Assay
2.5. Microcystis novacekii and Chlorella vulgaris Recovery Assay
2.6. MTT—Metabolic Activity Assay
2.7. Biomphalaria glabrata (Embryo) Toxicity Assay
2.8. Ecological Risk Assessment (ERA)
2.9. Quality Control
2.10. Statistical Analysis
2.11. Use of Artificial Intelligence for Language Assistance
3. Results
3.1. Fluoxetine Toxicity in Bacteria
3.2. Fluoxetine Toxicity in Microalgae and Cyanobacteria
3.3. Fluoxetine Toxicity in Mollusks
3.4. Ecological Risk Assessment
4. Discussion
4.1. Fluoxetine Toxicity to Microalgae C. vulgaris
4.2. Fluoxetine Toxicity to Cyanobacteria M. novacekii
4.3. Microcystis novacekii and Chlorella vulgaris Poisoning Recovery
4.4. Microcystis novacekii and Chlorella vulgaris Metabolic Activity
4.5. Fluoxetine Toxicity to Bioluminescent Bacteria A. fischeri
4.6. Fluoxetine Toxicity to Mollusk B. glabrata
4.7. Ecological Risk Characterization for Fluoxetine
4.8. Ecological Implications and Environmental Relevance
4.9. Degradation Pathways of FLX
4.10. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Depression. Depressive Disorder (Depression). 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 20 August 2025).
- Wisner, K.L.; Schaefer, C. Psychotropic Drugs. In Drugs During Pregnancy and Lactation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 293–339. [Google Scholar] [CrossRef]
- Rezende, K.F.O.; de Almeida, G.L.M.; Henriques, M.B.; Barbieri, E. Effect of Fluoxetine Hydrochloride on Routine Metabolism of Lambari (Deuterodon iguape, Eigenmann, 1907) and Phantom Shrimp (Palaemon pandaliformis, Stimpson, 1871). Braz. Arch. Biol. Technol. 2021, 64, e21200262. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, X.; Gan, Y.; Cheng, H.; Fan, S.; Li, X.; Tang, J. Ecotoxicological effects of the antidepressant fluoxetine and its removal by the typical freshwater microalgae Chlorella pyrenoidosa. Ecotoxicol. Environ. Saf. 2022, 244, 114045. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.C.; Godoy, A.A.; Kummrow, F.; dos Santos, T.L.; Brandão, C.J.; Pinto, E. Occurrence of caffeine, fluoxetine, bezafibrate and levothyroxine in surface freshwater of São Paulo State (Brazil) and risk assessment for aquatic life protection. Environ. Sci. Pollut. Res. 2021, 28, 20751–20761. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef] [PubMed]
- Giebułtowicz, J.; Nałęcz-Jawecki, G. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol. Environ. Saf. 2014, 104, 103–109. [Google Scholar] [CrossRef]
- Ferrer, I.; Thurman, E.M. Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1259, 148–157. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Bringolf, R.B.; Heltsley, R.M.; Newton, T.J.; Eads, C.B.; Fraley, S.J.; Shea, D.; Cope, W.G. Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environ. Toxicol. Chem. 2010, 29, 1311–1318. [Google Scholar] [CrossRef]
- Koné, M.; Cologgi, D.L.; Lu, W.; Smith, D.W.; Ulrich, A.C. Pharmaceuticals in Canadian sewage treatment plant effluents and surface waters: Occurrence and environmental risk assessment. Environ. Technol. Rev. 2013, 2, 17–27. [Google Scholar] [CrossRef]
- Lajeunesse, A.; Smyth, S.A.; Barclay, K.; Sauvé, S.; Gagnon, C. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Res. 2012, 46, 5600–5612. [Google Scholar] [CrossRef]
- Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Wu, R.; Ruan, Y.; Lin, H.; Yuen, C.N.T.; Feng, H.; Lam, P.K.S. Occurrence and Fate of Psychiatric Pharmaceuticals in Wastewater Treatment Plants in Hong Kong: Enantiomeric Profiling and Preliminary Risk Assessment. ACS EST Water 2021, 1, 542–552. [Google Scholar] [CrossRef]
- Duarte, I.A.; Fick, J.; Cabral, H.N.; Fonseca, V.F. Bioconcentration of neuroactive pharmaceuticals in fish: Relation to lipophilicity, experimental design and toxicity in the aquatic environment. Sci. Total. Environ. 2022, 812, 152543. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gautam, L.; Hall, S.W. The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry. Chemosphere 2019, 223, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Zacarías, C.; Barocio, M.E.; Hidalgo-Vázquez, E.; Sosa-Hernández, J.E.; Parra-Arroyo, L.; López-Pacheco, I.Y.; Barceló, D.; Iqbal, H.N.; Parra-Saldívar, R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Sci. Total Environ. 2021, 757, 143722. [Google Scholar] [CrossRef]
- Martin, J.M.; Bertram, M.G.; Saaristo, M.; Fursdon, J.B.; Hannington, S.L.; Brooks, B.W.; Burket, S.R.; Mole, R.A.; Deal, N.D.S.; Wong, B.B.M. Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. Environ. Sci. Technol. 2019, 53, 6035–6043. [Google Scholar] [CrossRef]
- Martin, J.M.; Nagarajan-Radha, V.; Tan, H.; Bertram, M.G.; Brand, J.A.; Saaristo, M.; Dowling, D.K.; Wong, B.B. Antidepressant exposure causes a nonmonotonic reduction in anxiety-related behaviour in female mosquitofish. J. Hazard. Mater. Lett. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Villain, J.; Minguez, L.; Halm-Lemeille, M.P.; Durrieu, G.; Bureau, R. Acute toxicities of pharmaceuticals toward green algae. mode of action, biopharmaceutical drug disposition classification system and quantile regression models. Ecotoxicol. Environ. Saf. 2016, 124, 337–343. [Google Scholar] [CrossRef]
- Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 2016, 23, 4992–5001. [Google Scholar] [CrossRef]
- Miazek, K.; Brozek-Pluska, B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int. J. Mol. Sci. 2019, 20, 2492. [Google Scholar] [CrossRef]
- Xin, X.; Huang, G.; Zhang, B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. J. Hazard. Mater. 2021, 410, 124619. [Google Scholar] [CrossRef]
- Johnson, D.J.; Sanderson, H.; Brain, R.A.; Wilson, C.J.; Solomon, K.R. Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol. Environ. Saf. 2007, 67, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Minguez, L.; Bureau, R.; Halm-Lemeille, M.P. Joint effects of nine antidepressants on Raphidocelis subcapitata and Skeletonema marinoi: A matter of amine functional groups. Aquat. Toxicol. 2018, 196, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Neuwoehner, J.; Escher, B.I. The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat. Toxicol. 2011, 101, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Couper, J.M.; Leise, E.M. Serotonin Injections Induce Metamorphosis in Larvae of the Gastropod Mollusc Ilyanassa obsoleta. Biol. Bull. 1996, 191, 178–186. [Google Scholar] [CrossRef]
- Nentwig, G. Effects of Pharmaceuticals on Aquatic Invertebrates. Part II: Antidepressant Drug Fluoxetine. Arch. Environ. Contam. Toxicol. 2007, 52, 163–170. [Google Scholar] [CrossRef]
- Gust, M.; Buronfosse, T.; Giamberini, L.; Ramil, M.; Mons, R.; Garric, J. Effects of fluoxetine on the reproduction of two prosobranch mollusks: Potamopyrgus antipodarum and Valvata piscinalis. Environ. Pollut. 2009, 157, 423–429. [Google Scholar] [CrossRef]
- Morais, V.H.T.; de Luna Filho, R.L.C.; dos Santos Júnior, J.A.; Siqueira, W.N.; Pereira, D.R.; Lima, M.V.; Fagundes Silva, H.A.M.; Joacir de França, E.; Amaral, R.d.S.; de Albuquerque Melo, A.M.M. Use of Biomphalaria glabrata as a bioindicator of groundwater quality under the influence of NORM. J. Environ. Radioact. 2022, 242, 106791. [Google Scholar] [CrossRef]
- Souza-Silva, G.; de Souza, C.R.; Pereira, C.A.D.J.; dos Santos Lima, W.; Mol, M.P.G.; Silveira, M.R. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: A systematic review. Environ. Sci. Pollut. Res. 2023, 30, 28506–28524. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Gorham, P.R. An Improved Method for Obtaining Axenic Clones of Planktonic Blue-Green Algae1,2. J. Phycol. 1974, 10, 238–240. [Google Scholar] [CrossRef]
- Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria (ISO11348-3:2007) 14:00-17:00. ISO: Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/73342.html (accessed on 7 January 2024).
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Souza-Silva, G.; Souza, C.R.; Pereira, C.A.d.J.; Lima, W.d.S.; Mol, M.P.G.; Silveira, M.R. Toxicological evaluation of antiretroviral Tenofovir Disoproxil Fumarate on the mollusk Biomphalaria glabrata and its hemocytes. Sci. Total Environ. 2023, 891, 164484. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas (ABNT). Norma Técnica nº 12648: Ecotoxicologia Aquática—Toxicidade Crônica—Método de Ensaio com Algas (Chlorophyceae); ABNT: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Caixeta, M.B.; Araújo, P.S.; Pereira, A.C.; Tallarico, L.d.F.; Rocha, T.L. Biomphalaria embryotoxicity test (BET): 60 years of research crossing boundaries for developing standard protocols. Sci. Total Environ. 2022, 833, 155211. [Google Scholar] [CrossRef] [PubMed]
- Barmshuri, M.; Kholdebarin, B.; Sadeghi, S. Applications of comet and MTT assays in studying Dunaliella algae species. Algal Res. 2023, 70, 103018. [Google Scholar] [CrossRef]
- Souza-Silva, G.; Alcantara, M.D.; Souza, C.R.d.; Moreira, C.P.d.S.; Nunes, K.P.; Pereira, C.A.d.J.; Mol, M.P.G.; Silveira, M.R. Toxicity of the Antiretrovirals Tenofovir Disoproxil Fumarate, Lamivudine, and Dolutegravir on Cyanobacterium Microcystis novacekii. Water 2025, 17, 815. [Google Scholar] [CrossRef]
- Pellegrino, J.; Katz, N. Experimental chemoterapy of Schistosomiasis mansoni. Adv. Parasitol. 1968, 6, 233–290. [Google Scholar]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ. Sci Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef]
- ECHA; European Chemicals Bureau. European Union Risk Assessment Report: Chromium Trioxide, Sodium Chromate, Sodium Dichromate, Ammonium Dichromate and Potassium Dichromate. 3rd. Priority List; 2005; Volume 53. Available online: https://echa.europa.eu/registration-dossier/-/registered-dossier/15102/6/2/6 (accessed on 7 January 2024).
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef]
- Brooks, B.W.; Foran, C.M.; Richards, S.M.; Weston, J.; Turner, P.K.; Stanley, J.K.; Solomon, K.R.; Slattery, M.; La Point, T.W. Aquatic ecotoxicology of fluoxetine. Toxicol. Lett. 2003, 142, 169–183. [Google Scholar] [CrossRef]
- European Commission. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. Part II: Environmental Risk Assessment. Luxembourg: Office for Official Publications of the European Communities. 1996; ISBN 92-827-8012-0. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC23785 (accessed on 22 January 2024).
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 8th ed.; UN: New York, NY, USA, 2015. [Google Scholar]
- Reddy, K.; Renuka, N.; Kumari, S.; Ratha, S.K.; Moodley, B.; Pillay, K.; Bux, F. Assessing the potential for nevirapine removal and its ecotoxicological effects on Coelastrella tenuitheca and Tetradesmus obliquus in aqueous environment. Environ. Pollut. 2023, 317, 120736. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.T.; Hou, J.H.; Su, C.I.; Chen, C.L. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol. Environ. Saf. 2009, 72, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Lodowska, J.; Wilczok, A.; Tam, I.; Cwalina, B.; Swiatkowska, L.; Wilczok, T. Alteration of growth and metabolic activity of cells in the presence of propranolol and metoprolol. Acta Pol. Pharm. 2003, 60, 263–268. [Google Scholar] [PubMed]
- Zhang, W.; Zhang, M.; Lin, K.; Sun, W.; Xiong, B.; Guo, M.; Cui, X.; Fu, R. Eco-toxicological effect of Carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ. Toxicol. Pharmacol. 2012, 33, 344–352. [Google Scholar] [CrossRef]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Skrzypek, S.; Zieliński, M.; Gadzała-Kopciuch, R. Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus. Chemosphere 2019, 224, 93–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Chang, F.; Yi, M.; Ge, H.; Fu, J.; Dang, C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. Sci. Total Environ. 2023, 854, 158723. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, T.Y.; Dao, G.H.; Hu, H.Y. Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone. Environ. Pollut. 2018, 241, 200–211. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Kim, J.R.; Roh, H.S.; Jeon, B.H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017, 323, 212–219. [Google Scholar] [CrossRef]
- Xiong, Q.; Liu, Y.S.; Hu, L.X.; Shi, Z.Q.; Cai, W.W.; He, L.Y.; Ying, G.-G. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res. 2020, 175, 115656. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 2016, 313, 1251–1257. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Li, W.; Zhang, M.; Li, P.; Han, J. Removal mechanisms of erythromycin by microalgae Chlorella pyrenoidosa and toxicity assessment during the treatment process. Sci. Total Environ. 2022, 848, 157777. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Dao, G.H.; Zhuang, L.L.; Zhang, T.Y.; Wu, Y.H.; Hu, H.Y. Enhanced simultaneous removal of nitrogen, phosphorous, hardness, and methylisothiazolinone from reverse osmosis concentrate by suspended-solid phase cultivation of Scenedesmus sp. LX1. Environ. Int. 2020, 139, 105685. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants—Opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef] [PubMed]
- de-Bashan, L.E.; Bashan, Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef]
- Seoane, M.; Rioboo, C.; Herrero, C.; Cid, Á. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Mar. Environ. Res. 2014, 101, 1–7. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, W.; Li, J.; Yuan, M.; Zhang, J.; Xu, F.; Xu, H.; Zheng, X.; Wang, L. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ. Pollut. 2020, 263, 114554. [Google Scholar] [CrossRef]
- Brezovšek, P.; Eleršek, T.; Filipič, M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res. 2014, 52, 168–177. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Mehta, S.K.; Amar, A.; Gaur, J.P. Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 2006, 62, 538–544. [Google Scholar] [CrossRef]
- Feijão, E.; Cruz de Carvalho, R.; Duarte, I.A.; Matos, A.R.; Cabrita, M.T.; Novais, S.C.; Lemos, M.F.L.; Caçador, I.; Marques, J.C.; Reis-Santos, P.; et al. Fluoxetine Arrests Growth of the Model Diatom Phaeodactylum tricornutum by Increasing Oxidative Stress and Altering Energetic and Lipid Metabolism. Front. Microbiol. 2020, 11, 1803. [Google Scholar] [CrossRef]
- Xu, K.; Li, Z.; Juneau, P.; Xiao, F.; Lian, Y.; Zhang, W.; Shu, L.; Jiang, H.; Zhang, K.; Wang, C.; et al. Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles. Environ. Pollut. 2021, 274, 116508. [Google Scholar] [CrossRef]
- Campbell, D.; Hurry, V.; Clarke, A.K.; Gustafsson, P.; Öquist, G. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation. Microbiol. Mol. Biol. Rev. 1998, 62, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sabu, S.; Sangela, V.; Meena, M.; Rajput, V.D.; Minkina, T.; Vinayak, V.; Harish. The mechanism of nanoparticle toxicity to cyanobacteria. Arch Microbiol. 2022, 205, 30. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, F.C.R.; Vaz, I.C.D.; Barbosa, F.A.R.; Magalhães, S.M.S. Toxicological effects of ciprofloxacin and chlorhexidine on growth and chlorophyll a synthesis of freshwater cyanobacteria. Braz. J. Pharm. Sci. 2019, 55, e17661. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, Q.; Zhang, Z.; Hu, B.; Chen, J.; Chen, J.; Qian, H. Pollutant toxicology with respect to microalgae and cyanobacteria. J. Environ. Sci. 2021, 99, 175–186. [Google Scholar] [CrossRef]
- Mckellar, Q.A.; Sanchez Bruni, S.F.; Jones, D.G. Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. J. Vet. Pharmacol. Ther. 2004, 27, 503–514. [Google Scholar] [CrossRef]
- Sousa, H.; Sousa, C.A.; Simões, L.C.; Simões, M. Microalgal-based removal of contaminants of emerging concern. J. Hazard. Mater. 2022, 423, 127153. [Google Scholar] [CrossRef]
- Lu, T.; Zhu, Y.; Ke, M.; Peijnenburg, W.J.G.M.; Zhang, M.; Wang, T.; Chen, J.; Qian, H. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. Environ. Int. 2019, 126, 268–278. [Google Scholar] [CrossRef]
- Qian, H.; Li, J.; Pan, X.; Sun, Z.; Ye, C.; Jin, G.; Fu, Z. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ. Toxicol. 2012, 27, 229–237. [Google Scholar] [CrossRef]
- Montalbán, M.G.; Hidalgo, J.M.; Collado-González, M.; Díaz Baños, F.G.; Víllora, G. Assessing chemical toxicity of ionic liquids on Vibrio fischeri: Correlation with structure and composition. Chemosphere 2016, 155, 405–414. [Google Scholar] [CrossRef]
- Santos, D.R.A.; Garcia, V.S.G.; Vilarrubia, A.C.S.; Borrely, S.I. Reduction of Acute Toxicity of the Pharmaceutical Fluoxetine (Prozac) Submitted to Ionizing Radiation to Vibrio fischeri; Associação Brasileira de Energia Nuclear: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Silva, V.H.O.; dos Santos Batista, A.P.; Silva Costa Teixeira, A.C.; Borrely, S.I. Degradation and acute toxicity removal of the antidepressant Fluoxetine (Prozac®) in aqueous systems by electron beam irradiation. Environ. Sci. Pollut. Res. 2016, 23, 11927–11936. [Google Scholar] [CrossRef]
- Fong, P.P.; Ford, A.T. The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquat. Toxicol. 2014, 151, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.L.; da Silva, K.R.; de Lima Paula, L.A.; Cunha, W.R.; Ramos, S.B.; Rodrigues, V.; Cabral, F.J.; Magalhães, L.G. Molluscicidal and cercaricidal activities of curcumin on Biomphalaria glabrata and Schistosoma mansoni cercariae. Pest Manag. Sci. 2020, 76, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J.; Roesijadi, G. Resistance to cadmium and parasite infection are inversely related in two strains of a freshwater gastropod. Environ. Toxicol. Chem. 2002, 21, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, M.N.; Nyagah, D.M.; Njagi, A. Pharmaceutical waste: Overview, management and impact of improper disposal. J. PeerScientist 2020, 3, e1000028. [Google Scholar]
- FDA-CDER. Guidance for Industry-Environmental Assessment of Human Drugs Biologics Applications Guidance for Industry FDACenter for Drug Evaluation Research Rockville, M.D. 1998. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/environmental-assessment-human-drug-and-biologics-applications (accessed on 2 December 2025).
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Saad, W.; Salam, D. Environmental risk analysis and prioritization of pharmaceuticals in a developing world context. Sci. Total Environ. 2016, 557–558, 31–43. [Google Scholar] [CrossRef]
- Richmond, E.K.; Rosi, E.J.; Reisinger, A.J.; Hanrahan, B.R.; Thompson, R.M.; Grace, M.R. Influences of the antidepressant fluoxetine on stream ecosystem function and aquatic insect emergence at environmentally realistic concentrations. J. Freshw. Ecol. 2019, 34, 513–531. [Google Scholar] [CrossRef]
- Schmitt, H.; Boucard, T.; Garric, J.; Jensen, J.; Parrott, J.; Péry, A.; Römbke, J.; Straub, J.O.; Hutchinson, T.H.; Sánchez-Argüello, P.; et al. Recommendations on the environmental risk assessment of pharmaceuticals: Effect characterization. Integr. Environ. Assess. Manag. 2010, 6, 588–602. [Google Scholar] [CrossRef]
- Hairston, N.G., Jr.; Hairston, N.G., Sr. Cause-Effect Relationships in Energy Flow, Trophic Structure, and Interspecific Interactions. Am. Nat. 1993, 142, 379–411. [Google Scholar] [CrossRef]
- Miroglio, R.; Nugnes, R.; Zanetti, L.; Faimali, M.; Gambardella, C. Environmental concentrations of fluoxetine antidepressant affect early development of sea urchin Paracentrotus lividus. Mar. Environ. Res. 2025, 207, 107080. [Google Scholar] [CrossRef]
- Chaber-Jarlachowicz, P.; Gworek, B.; Kalinowski, R. Removal efficiency of pharmaceuticals during the wastewater treatment process: Emission and environmental risk assessment. PLoS ONE 2025, 20, e0331211. [Google Scholar] [CrossRef]
- Lam, M.W.; Young, C.J.; Mabury, S.A. Aqueous Photochemical Reaction Kinetics and Transformations of Fluoxetine. Environ. Sci. Technol. 2004, 39, 513–522. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Shen, Y. Theoretical insights of the pharmaceutical compound fluoxetine in water: Role in direct photolysis and indirect photolysis by free radicals. J. Environ. Sci. 2024, 142, 269–278. [Google Scholar] [CrossRef]
- Kwon, J.-W.; Armbrust, K.L. Laboratory persistence and fate of fluoxetine in aquatic environments. Environ. Toxicol. Chem. 2006, 25, 2561–2568. [Google Scholar] [CrossRef]



| Place | Sample | Year | FLX | Reference |
|---|---|---|---|---|
| Brazil | Guarapiranga Reservoir | 2017 | 1.2–2.1 | [5] |
| Brazil | Billings Reservoir | 2017 | 1.8–3.3 | [5] |
| Brazil | Sorocaba River | 2017 | 1.4–1.6 | [5] |
| Brazil | Cotia River | 2017 | 1.4–3.5 | [5] |
| Brazil | Cotia River | 2018 | 1.1–1.3 | [5] |
| Brazil | Grande River | 2017 | 1.2 | [5] |
| Brazil | Paraíba River | 2017 | 1.2 | [5] |
| Portugal | Douro River | 2017 | 1.9–2.0 | [6] |
| Portugal | Leça River | 2017 | 6.7–28.9 | [6] |
| Poland | Vistula River | 2013 | 3.2 | [7] |
| USA | - | - | 65 | [8] |
| USA | - | 2000 | 12 | [9] |
| USA | Crabtree Creek River | 2007 | 10.0–14.4 | [10] |
| USA | Crabtree Creek River | 2007 | 5.1–7.3 | [10] |
| Canada | Effluent | - | 799.0 | [11] |
| Canada | Effluent | 2009 | 6.6–20.0 | [12] |
| Canada | Influent | 2009 | 9.0–26.0 | [12] |
| FLX µg/L | Inhibition Rate (%)/Days | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Acute Exposure | Chronic Exposure | |||||||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 5.5 | 14 | 12.3 | 1.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 15.9 | 21.9 | 14.7 | 9.3 | 5.5 | 17.7 | 12.8 | 12.7 | 11.5 | 11.5 | 10.0 | 1.4 | 1.1 | 0 |
| 10 | ≥100 | 58.1 | 49.7 | 38.7 | 34.2 | 36.1 | 27.1 | 21.6 | 18 | 18 | 14.8 | 7.3 | 7.7 | 5.3 |
| 50 | ≥100 | 85.5 | 89.3 | 89.2 | 61.9 | 52.3 | 47.7 | 31.9 | 22 | 22 | 21.1 | 16.3 | 14.5 | 13.7 |
| 100 | ≥100 | ≥100 | ≥100 | 95.6 | 87.2 | 77.8 | 68.6 | 41.3 | 42.2 | 42.2 | 42.4 | 44 | 45.6 | 30.6 |
| 500 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | 99.8 |
| 1000 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 | ≥100 |
| FLX µg/L | Inhibition Rate (%)/Days | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Acute Exposure | Chronic Exposure | |||||||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 7.9 | 9.1 | 5.0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 15.5 | 17.0 | 9.6 | 3.2 | 1.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10 | 22.6 | 32.8 | 47.9 | 23.3 | 11.6 | 5.3 | 0.3 | 0.5 | 0 | 0 | 0.2 | 0 | 0 | 0 |
| 50 | 26.6 | 50.6 | 65.3 | 37.8 | 25.8 | 15.3 | 7.3 | 5.2 | 2.2 | 3.2 | 0.9 | 0.2 | 0.3 | 0 |
| 100 | 33.3 | 78.8 | 89.6 | 59.8 | 49.7 | 32.1 | 25.7 | 19.4 | 12.3 | 11.2 | 10.8 | 12.3 | 10.1 | 9.2 |
| 500 | 37.5 | 93.8 | ≥100 | 87.7 | 56.7 | 45.4 | 39.4 | 34.3 | 31.8 | 25.0 | 25.7 | 22.8 | 21.3 | 17.3 |
| 1000 | 41.9 | ≥100 | ≥100 | 92.2 | 86.9 | 75.1 | 63.2 | 68.7 | 55.3 | 42.9 | 39.4 | 33.2 | 34.2 | 28.6 |
| M. novacekii | C. vulgaris | |
|---|---|---|
| Days | EC50 (µg/L) | EC50 (µg/L) |
| 1 | 7.4 ± 0.9 | >1000 |
| 2 | 8.1 ± 1.6 | 49.6 ± 1.3 |
| 3 | 10.1 ± 3.3 | 13.2 ± 0.9 |
| 4 | 17.5 ± 1.0 | 83.1 ± 1.7 |
| 5 | 17.5 ± 1.0 | 105.5 ± 3.2 |
| 6 | 44.7 ± 0.9 | 552.8 ± 14.1 |
| 7 | 61.1 ± 8.4 | 642.1 ± 24.3 |
| 8 | 114.0 ± 17.8 | 711.2 ± 4.8 |
| 9 | 137.4 ± 21.1 | 790.6 ± 16.4 |
| 10 | 131.8 ± 14.7 | >1000 |
| 11 | 156.8 ± 10.1 | >1000 |
| 12 | 126.8 ± 16.2 | >1000 |
| 13 | 180.5 ± 3.7 | >1000 |
| 14 | 217.1 ± 7.7 | >1000 |
| Organism | EC50 | RQs 1 | RR 1 | RQs 2 | RR 2 |
|---|---|---|---|---|---|
| A. fischeri | 3140 µg/L | <0.01 | IR | 13.7 | HR |
| M. novacekii | 10.71 µg/L | 0.31 | MR | 4014.9 | HR |
| C. vulgaris | 13.01 µg/L | 0.25 | MR | 3305.1 | HR |
| B. glabrata (embryos) | 34.98 µg/L | 0.09 | LR | 1229.3 | HR |
| B. glabrata (newborns) | 1770 µg/L | <0.01 | IR | 24.3 | HR |
| Water Type | Place | FLX | RQs (RR) | Reference |
|---|---|---|---|---|
| River | Portugal | 28.9 ng/L | 2.7 (HR) | [6] |
| River | Brazil | 3.5 ng/L | 0.3 (MR) | [5] |
| River | Poland | 3.2 ng/L | 0.3 (MR) | [7] |
| Surface | USA | 65 ng/L | 6.1 (HR) | [8] |
| Surface | USA | 12 ng/L | 1.1 (HR) | [9] |
| Reservoir | Brazil | 3.3 ng/L | 0.3 (MR) | [5] |
| Reservoir | Brazil | 2.1 ng/L | 0.2 (MR) | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Souza-Silva, G.; Starling, M.C.V.M.; Souza, C.R.d.; Carvalho, D.d.; Alcântara, M.D.; Rodrigues-Silva, F.; Pereira, C.A.d.J.; Mol, M.P.G.; Silveira, M.R. Ecotoxicity of Fluoxetine Hydrochloride on Aquatic Organisms from Different Taxonomic Groups. Environments 2026, 13, 10. https://doi.org/10.3390/environments13010010
Souza-Silva G, Starling MCVM, Souza CRd, Carvalho Dd, Alcântara MD, Rodrigues-Silva F, Pereira CAdJ, Mol MPG, Silveira MR. Ecotoxicity of Fluoxetine Hydrochloride on Aquatic Organisms from Different Taxonomic Groups. Environments. 2026; 13(1):10. https://doi.org/10.3390/environments13010010
Chicago/Turabian StyleSouza-Silva, Gabriel, Maria Clara V. M. Starling, Clessius Ribeiro de Souza, Daniela de Carvalho, Mariângela Domingos Alcântara, Fernando Rodrigues-Silva, Cíntia Aparecida de Jesus Pereira, Marcos Paulo Gomes Mol, and Micheline Rosa Silveira. 2026. "Ecotoxicity of Fluoxetine Hydrochloride on Aquatic Organisms from Different Taxonomic Groups" Environments 13, no. 1: 10. https://doi.org/10.3390/environments13010010
APA StyleSouza-Silva, G., Starling, M. C. V. M., Souza, C. R. d., Carvalho, D. d., Alcântara, M. D., Rodrigues-Silva, F., Pereira, C. A. d. J., Mol, M. P. G., & Silveira, M. R. (2026). Ecotoxicity of Fluoxetine Hydrochloride on Aquatic Organisms from Different Taxonomic Groups. Environments, 13(1), 10. https://doi.org/10.3390/environments13010010

