Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Graphene Nanoplatelets (GNPs) from Conventional Graphite
2.2. Synthesis of Graphene Oxide Quantum Dots (GOQDs)
2.3. Preparation and Impregnation of GNPs and GOQDs into the Fiber Matrix
2.4. Biofilm Growth on the Fiber Matrix
2.5. Analytical Techniques
2.6. Anaerobic Digestion Experiments
2.7. Material Characterization
Statistical Analysis
2.8. Scope and Control Design
3. Results and Discussion
3.1. Fixation of GNPs and GOQDs in the Fiber Matrix
Fiber Matrix | Dry Matrix Weight (mg) | Fixed Weight (mg) | Retention (%) |
---|---|---|---|
FMC | 330.02 ± 0.03 | 328.0 ± 0.03 | - |
FM30 | 347.07 ± 0.01 | 2.2 ± 0.22 | 7.3 ± 0.7 |
FM50 | 372.32 ± 0.02 | 4.15 ± 0.25 | 8.3 ± 0.5 |
FM100 | 360.32 ± 0.01 | 14.42 ± 0.58 | 14.4 ± 0.6 |
FMDOT30 | 392.5 ± 0.05 | 3.9 ± 0.31 | 13.0 ± 1.0 |
FMDOT50 | 360.57 ± 0.02 | 6.62 ± 1.08 | 13.2 ± 2.1 |
FMDOT100 | 352.85 ± 0.01 | 12.42 ± 1.25 | 12.4 ± 1.3 |
3.1.1. Physicochemical Characterization of the Materials
3.1.2. Fiber Matrix Characterization
3.1.3. Substrate Characterization
Parameter | LF-FVW | Inoculum | COD/TS Ratio |
---|---|---|---|
TCOD (g/L) | 36.78 ± 1.3 | 84.2 ± 1.2 | 23.6 |
SCOD (g/L) | 27.89 ± 1.7 | 68 ± 1.3 | |
TS (%) | 1.56 ± 0.1 | 4.49 ± 0.01 | |
TVS (%) | 75.85 ± 0.4 | 41.51 ± 2.39 | |
Temperature (°C) | 25 ± 0.2 | 24 ± 0.2 | |
pH | 4.01 ± 0.3 | 8.93 ± 0.64 |
3.2. LASR Monitoring
3.2.1. Effect of the Fiber Matrix on Biogas and Biomethane Production
Source of Variation | Sum of Squares | df | Mean Square | F | p-Value | Significant (p < 0.05) |
---|---|---|---|---|---|---|
Type of nanomaterial | 1060.848 | 1 | 1060.848 | 14.96 | 0.0048 | Yes |
Concentration | 1757.389 | 3 | 585.796 | 8.26 | 0.0078 | Yes |
Interaction between Nanomaterial and Concentration | 612.049 | 3 | 204.016 | 2.88 | 0.1031 | No |
3.2.2. COD Removal and pH Monitoring in BMP Tests
3.2.3. Biofilm Morphology in the Fiber Matrix
3.3. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
BAC | Biological activated carbon |
ANOVA | Analysis of variance |
BMP | Biochemical methane potential |
C-EG | Steam-exploded graphite |
CFM | Control fiber matrix |
COD | Chemical oxygen demand |
CQDs | Carbon quantum dots |
DIET | Direct interspecies electron transfer |
DMF | N,N-dimethylformamide |
EPS | Extracellular polymeric substances |
FM | Fiber matrix with graphene nanoplatelets |
FMDOT | Fiber matrix with graphene oxide quantum dots |
FMP | Polymeric fiber matrix |
FTIR | Fourier transform infrared spectroscopy |
GAC | Granular activated carbon |
GC | Gas chromatography |
GNPs | Graphene nanoplatelets |
GO | Graphene oxide |
GOQDs | Graphene oxide quantum dots |
HRT | Hydraulic retention time |
LASR | Lab-scale anaerobic sludge reactor |
LF-FVW | Liquid fraction of fruit and vegetable waste |
OFMSW | Organic fraction of municipal solid waste |
PAC | Powdered activated carbon |
pH | Potential of hydrogen |
rGO | Reduced graphene oxide |
SCOD | Soluble chemical oxygen demand |
SEM | Scanning electron microscopy |
TCOD | Total chemical oxygen demand |
TS | Total solids |
TVS | Total volatile solids |
UOSW | Urban organic solid waste |
Vu | Working volume |
References
- Darmey, J.; Ahiekpor, J.C.; Narra, S.; Achaw, O.W.; Ansah, H.F. Municipal solid waste generation trend and bioenergy recovery potential: A review. Energies 2023, 16, 7753. [Google Scholar] [CrossRef]
- Ebrahimian, F.; Denayer, J.F.; Mohammadi, A.; Khoshnevisan, B.; Karimi, K. A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresour. Technol. 2023, 368, 128316. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities—A review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Orduña-Gaytán, F.; Vallejo-Cantú, N.A.; Alvarado-Vallejo, A.; Rosas-Mendoza, E.S.; Sandoval-Herazo, L.C.; Alvarado-Lassman, A. Evaluation of the removal of organic matter and nutrients in the co-treatment of fruit and vegetable waste using a bioreactor-constructed wetlands system. Processes 2022, 10, 278. [Google Scholar] [CrossRef]
- Alvarado-Lassman, A.; Sandoval-Ramos, A.; Flores-Altamirano, M.G.; Vallejo-Cantú, N.A.; Méndez-Contreras, J.M. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles. Water Environ. Res. 2010, 82, 387–391. [Google Scholar] [CrossRef]
- Huang, X. The Promotion of Anaerobic Digestion Technology Upgrades in Waste Stream Treatment Plants for Circular Economy in the Context of “Dual Carbon”: Global Status, Development Trend, and Future Challenges. Water 2024, 16, 3718. [Google Scholar] [CrossRef]
- Abera, G.B.; Trømborg, E.; Solli, L.; Walter, J.M.; Wahid, R.; Govasmark, E.; Horn, S.J.; Aryal, N.; Feng, L. Biofilm Application for Anaerobic Digestion: A Systematic Review and an Industrial Scale Case. Biotechnol. Biofuels Bioprod. 2024, 17, 145. [Google Scholar] [CrossRef]
- Marín-Peña, O.; Alvarado-Lassman, A.; Vallejo-Cantú, N.A.; Juárez-Barojas, I.; Rodríguez-Jarquín, J.P.; Martínez-Sibaja, A. Electrical conductivity for monitoring the expansion of the support material in an anaerobic biofilm reactor. Processes 2020, 8, 77. [Google Scholar] [CrossRef]
- Rosas-Mendoza, E.S.; Méndez-Contreras, J.M.; Martínez-Sibaja, A.; Vallejo-Cantú, N.A.; Alvarado-Lassman, A. Anaerobic digestion of citrus industry effluents using an anaerobic hybrid reactor. Clean Technol. Environ. Policy 2018, 20, 1387–1397. [Google Scholar] [CrossRef]
- Ajay, C.M.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, S.H.; Lim, T.G.; Park, J.H.; Kim, B.; Buffière, P.; Park, H.D. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective. Bioresour. Technol. 2021, 322, 124587. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, J.; Feng, Y.; Ding, J. Improvement of direct interspecies electron transfer via adding conductive materials in anaerobic digestion: Mechanisms, performances, and challenges. Front. Microbiol. 2022, 13, 860749. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Cheng, J.; Zhang, J.; Zhou, J.; Cen, K.; Murphy, J.D. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 239, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Gan, R.; Jia, H.; Yong, X.; Yong, Y.C.; Zhou, J. Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in an electromethanogenesis system. Chem. Eng. J. 2020, 389, 124510. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Y.; Lin, P.; Li, J.; Dong, H.; Yu, H.; Qi, L.; Ren, L. Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste: Attention to methane production and the fate of antibiotic resistance genes. Bioresour. Technol. 2021, 339, 125585. [Google Scholar] [CrossRef]
- Longhin, E.M.; Rios-Mondragon, I.; Mariussen, E.; Zheng, C.; Busquets, M.; Gajewicz-Skretna, A.; Hofshagen, O.-B.; Gómez Bastus, N.; Franco Puntes, V.; Cimpan, M.R.; et al. Hazard Assessment of Nanomaterials: How to Meet the Requirements for (Next Generation) Risk Assessment. Part. Fibre Toxicol. 2024, 21, 54. [Google Scholar] [CrossRef]
- Schwirn, K.; Voelker, D.; Galert, W.; Quik, J.; Tietjen, L. Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them? Integr. Environ. Assess. Manag. 2020, 16, 706–717. [Google Scholar] [CrossRef]
- Bleeker, E.A.J.; Swart, E.; Braakhuis, H.; Fernández-Cruz, M.L.; Friedrichs, S.; Gosens, I.; Herzberg, F.; Jensen, K.A.; von der Kammer, F.; Kettelarij, J.; et al. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety—A proposal for further actions. Regul. Toxicol. Pharmacol. 2023, 139, 105360. [Google Scholar] [CrossRef]
- Chávez-Hernández, J.A.; Velarde-Salcedo, A.J.; Navarro-Tovar, G.; González, C. Safe Nanomaterials: From Their Use, Application, and Disposal to Regulations. Nanoscale Adv. 2024, 6, 1583–1610. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Framework for the Risk Assessment of Manufactured Nanomaterials Under the Canadian Environmental Protection Act (CEPA). Government of Canada. 2022. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/framework-risk-assessment-manufactured-nanomaterials-cepa-draft.html (accessed on 10 October 2025).
- Kundu, D.; Banerjee, S.; Karmakar, S.; Banerjee, R. A new insight on improved biomethanation using graphene oxide from fermented Assam lemon waste. Fuel 2022, 309, 122195. [Google Scholar] [CrossRef]
- Abdelwahab, T.A.M.; Pan, J.; Ni, J.-Q.; Yang, C.; Mohanty, M.K.; Darwish, E.A.; Desoky, S.H.M.; Yang, H.; Fodah, A.E.M. Nanoparticles for improving biogas production and effluent biofertilizer. Sci. Rep. 2025, 15, 19233. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yang, R.; Ren, Z.; Zhang, B.; Lu, Q.; Yi, M.; Luo, Y. Quantitative Relationship Between Surface Chemistry of Graphene and Compatibility with Rubbers Established by Two-Dimensional Solubility Parameters. RSC Adv. 2024, 14, 39081–39093. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, X.; Wang, S.; Chen, L.; Li, H. The functional graphene/epoxy resin composites prepared by a novel two-phase extraction method. Front. Chem. 2024, 12, 1433727. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.; Atchudan, R.; Cheong, I.W. Recent studies on dispersion of graphene–polymer composites. Polymers 2021, 13, 2375. [Google Scholar] [CrossRef]
- Dehnou, K.H.; Shariati, A.; Morsali, A.; Alipour, M.; Ghasemi, S. A review: Studying the effect of graphene nanoparticles on polymers. In J. Nanomater.; 2023; 2023, pp. 1–17. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891084/ (accessed on 10 October 2025).
- Wang, Y.; Li, H.; Zhang, X.; Xu, C. Optimizing graphene dispersion via polymer grafting for enhanced interface compatibility. Macromolecules 2025, 58, 2421–2433. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, M.; Liu, Y.; Zhao, D.; Liu, Y.; Tian, Z.; Liu, P.; Wang, L.; Li, L.; Yan, M. Interface-engineered functionalized graphene oxide reinforced polyamide 6 composites with enhanced mechanical and thermal properties. Polymer 2025, 335, 128849. [Google Scholar] [CrossRef]
- Megahed, M.; Fathy, A.; Morsy, D.; Shehata, F. Mechanical performance of glass/epoxy composites enhanced by micro- and nanosized aluminum particles. J. Ind. Text. 2021, 51, 68–92. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, C.; Zhang, P.; Zhang, J.; Wang, G.; He, X.; Zhang, Z. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci. Total Environ. 2017, 580, 1300–1308. [Google Scholar] [CrossRef]
- Ohemeng-Ntiamoah, J.; Datta, T. Biomethane potential test reveals microbial adaptation and increased methane yield during anaerobic co-digestion. Bioresour. Technol. Rep. 2021, 15, 100754. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Feng, Y.; Li, Q.; Wang, Q. Enhanced performances of anaerobic digestion processes: Role of nanomaterials in improving stability and electron transfer. J. Hazard. Mater. 2023, 459, 132249. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, O.; Kozlova, E.; Bredikhin, M.; Gubin, S.; Kolesnikov, E. Conductive polymers and their nanocomposites: Structure, properties, and applications. Polymers 2023, 15, 3783. [Google Scholar] [CrossRef] [PubMed]
- Usevičiūtė, L.; Baltrėnas, P.; Baltrėnaitė-Gedienė, E. Surface modification of polymeric media coated with conductive polyaniline to enhance methane production for anaerobic low-strength wastewater treatment. Int. J. Environ. Res. Public Health 2021, 18, 11493. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Huang, W.; Yang, Y.; Ji, M.; Nghiem, L.D.; Trinh, Q.T.; Tran, N.H. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresour. Technol. 2019, 288, 121619. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.M.A.; Othman, M.H.D.; Tai, Z.S.; Rabuni, M.F.; Amhamed, A.O.A.; Puteh, M.H.; Jaafar, J.; Rahman, M.A.; Kurniawan, T.A. Overcoming challenges in water purification by nanocomposite ceramic membranes: A review of limitations and technical solutions. J. Water Process Eng. 2024, 57, 104613. [Google Scholar] [CrossRef]
- Khan, T.; Aslam, M.; Basit, M.; Raza, Z.A. Graphene-embedded electrospun polyacrylonitrile nanofibers with enhanced thermo-mechanical properties. J. Nanopart. Res. 2023, 25, 78. [Google Scholar] [CrossRef]
- -Kady, M.M.; Ansari, I.; Arora, C.; Rai, N.; Soni, S.; Verma, D.K.; Mahmoud, A.E.D. Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. J. Mol. Liq. 2023, 370, 121046. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Buendia, I.M.; Bak, J.; Baun, A. Degradability of aged aquatic suspensions of C60 nanoparticles. Environ. Pollut. 2011, 159, 3134–3137. [Google Scholar] [CrossRef]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.; Croteau, M.N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Sajjad, W.; Zhang, Q.; Khan, I.; Ullah, K.; Wang, W. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ. Sci. Eur. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Kang, G.S.; Park, S.H.; Lee, J.H.; Lee, Y.S. Graphene quantum dots with nitrogen and oxygen co-doping: Tailored surface functionalization and enhanced redox performance. Chem. Eng. J. 2020, 389, 124465. [Google Scholar] [CrossRef]
- Usevičiūtė, L.; Kriauciunas, D.; Vaitkiene, A.; Rybakova, D.; Stankevičius, M.; Kliopova, I. Effects of graphene-based nanomaterials on anaerobic digestion: Biogas yield, microbial community, and potential environmental impact. Materials 2025, 18, 3561. [Google Scholar] [CrossRef]
- Ponzelli, M.; Lombardo, M.; Sacchi, R.; Santoro, C.; Frattini, D. The ambivalent role of graphene oxide in anaerobic environments: From microbial toxicity to bioelectrochemical stimulation. J. Hazard. Mater. 2024, 472, 134253. [Google Scholar] [CrossRef]
- Tan, X.M.; Lin, C.; Fugetsu, B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 2009, 47, 3479–3487. [Google Scholar] [CrossRef]
- Ghoto, K.; Simon, M.; Shen, Z.J.; Gao, G.F.; Li, P.F.; Li, H.; Zheng, H.L. Physiological and root exudation response of maize seedlings to TiO2 and SiO2 nanoparticles exposure. BioNanoScience 2020, 10, 473–485. [Google Scholar] [CrossRef]
- Ramos-Galicia, L.; Reyes-Vázquez, C.D.; Martínez-Hernández, A.L.; Rodríguez-González, J.A.; Rubio-González, C.; Almendarez-Camarillo, A.; Velasco-Santos, C. Performance of graphene derivatives produced by chemical and physical methods as reinforcements in glass fiber composite laminates. Appl. Compos. Mater. 2021, 28, 923–949. [Google Scholar] [CrossRef]
- Igarashi, K.; Miyako, E.; Kato, S. Direct interspecies electron transfer mediated by graphene oxide-based materials. Front. Microbiol. 2020, 10, 3068. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Kim, J.; Lee, C. Role and potential of direct interspecies electron transfer: A review on conductive materials in anaerobic digestion and related challenges. Processes 2018, 6, 159. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Wang, Y.; Chen, Y.; Zhao, Z.; Sun, C.; Zhang, J.; Li, S.; Zhou, Q.; Liu, H.; et al. Insights into Microbial Interactions and Electron Transfer Pathways in Anaerobic Digestion Systems: Implications for Process Optimization. Biotechnol. Biofuels Bioprod. 2023, 16, 391. [Google Scholar] [CrossRef]
- Yao, X.; Li, C.; Zhang, Y.; Wang, L.; Liu, Y.; Guo, Z. Fabrication and mechanical performance of graphene nanoplatelet/glass fiber reinforced polymer (GFRP) hybrid composites. Front. Mater. 2021, 8, 773343. [Google Scholar] [CrossRef]
- de la Luz-Asunción, M.; Pérez-Ramírez, E.E.; Martínez-Hernández, A.L.; García-Casillas, P.E.; Luna-Bárcenas, J.G.; Velasco-Santos, C. Adsorption and kinetic study of Reactive Red 2 dye onto graphene oxides and graphene quantum dots. Diam. Relat. Mater. 2020, 109, 108002. [Google Scholar] [CrossRef]
- Chaiprasert, P.; Vitidsant, T.; Tanticharoen, M.; Bhumiratana, S. Nylon fibers as supporting media in anaerobic hybrid reactors: Its effects on system performance and microbial distribution. Water Res. 2003, 37, 4605–4612. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, Y.; Zhang, W.; Zhang, X.; Liu, J.; Xu, J. Biofilm reactor with permeable materials as carriers for enhanced wastewater treatment performance. Water 2023, 15, 2415. [Google Scholar] [CrossRef]
- Alvarado-Vallejo, A.; Marín-Peña, O.; Rosas-Mendoza, E.S.; Méndez-Contreras, J.M.; Alvarado-Lassman, A. The valorization of fruit and vegetable wastes using an anaerobic fixed biofilm reactor: A case of discarded tomatoes from a traditional market. Processes 2024, 12, 1923. [Google Scholar] [CrossRef]
- Almendrala, M.C.; Valenzuela, K.A.T.; Santos, S.M.N.B.; Avena-Ardeta, L.G.S. Enhanced Biogas Production via Anaerobic Co-Digestion of Slaughterhouse and Food Waste Using Ferric Oxide as a Sustainable Conductive Material. arXiv 2025, arXiv:2505.04635. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; Liu, L.; Yan, Z.; Chui, C.; Yang, N.; Wang, C.; Shen, G.; Chen, Q. Enhancing methane production in anaerobic digestion of food waste using co-pyrolysis biochar derived from digestate and rice straw. Molecules 2025, 30, 1766. [Google Scholar] [CrossRef]
- Sahil, S.; Nanda, S. Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review. Sustainability 2025, 17, 6553. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Ortiz, M.; Gaviria, V.; Tamayo, A.; Chejne, F. Enhancing biomethane production from organic waste by incorporating biochar and activated carbon during anaerobic digestion. J. Mater. Cycles Waste Manag. 2025, 27, 924–938. [Google Scholar] [CrossRef]
- Ohemeng-Ntiamoah, J.; Datta, T. Can microbial acclimation work to avert inhibition during FOG co-digestion? In Residuals and Biosolids Conference 2021; Water Environment Federation: Alexandria, VA, USA, 2021. [Google Scholar]
- Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R.M.; Chhowalla, M.; Chabal, Y. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 2011, 115, 19761–19781. [Google Scholar] [CrossRef]
- Pérez-Ramírez, E.E.; Ramos-Galicia, L.; de la Luz-Asunción, M.; Saucedo-Rivalcoba, V.; Martínez-Hernández, A.L.; Rubio-Rosas, E.; Velasco-Santos, C. A green and easy large-scale method for obtaining graphene nanoplatelets by steam explosion and ultrasonic exfoliation. ChemistrySelect 2022, 7, e202202425. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Wang, B.; Ruoff, R.S. Chemical vapor deposition of graphene on thin-metal films. Cell Rep. Phys. Sci. 2021, 2, 100372. [Google Scholar] [CrossRef]
- Rodríguez, A.; Alvarado, M.; Pérez, E.; Torres, J. Surface modification of nylon 6,6 by plasma treatment: Effect on chemical structure and adhesion properties. Coatings 2021, 11, 197. [Google Scholar] [CrossRef]
- Tech, J.E.T. A Combination of Waste Biomass Activated Carbon and Nylon Nanofiber for Removal of Triclosan from Aqueous Solutions. J. Environ. Treat. Tech. 2020, 8, 1036–1045. Available online: https://www.researchgate.net/publication/343180322_A_Combination_of_Waste_Biomass_Activated_Carbon_and_Nylon_Nanofiber_for_Removal_of_Triclosan_from_Aqueous_Solutions (accessed on 10 October 2025). [CrossRef]
- Melo, J.P.; Ríos, P.L.; Povea, P.; Morales-Verdejo, C.; Camarada, M.B. Graphene Oxide Quantum Dots as the Support for the Synthesis of Gold Nanoparticles and Their Applications as New Catalysts for the Decomposition of Composite Solid Propellants. ACS Omega 2018, 3, 7278–7287. [Google Scholar] [CrossRef]
- Jin, S.H.; Kim, D.H.; Jun, G.H.; Hong, S.H.; Jeon, S. Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7, 1239–1245. [Google Scholar] [CrossRef]
- Menchaca-Campos, C.; García-Pérez, C.; Castañeda, I.; García-Sánchez, M.A.; Guardián, R.; Uruchurtu, J. Nylon/graphene oxide electrospun composite coating. Int. J. Polym. Sci. 2013, 2013, 621618. [Google Scholar] [CrossRef]
- Li, X.; Gu, X.; Zhang, S.; Li, H.; Feng, Q.; Sun, J.; Zhao, Q. Improving the fire performance of nylon-6,6 fabric by chemical grafting with acrylamide. Ind. Eng. Chem. Res. 2013, 52, 2290–2296. [Google Scholar] [CrossRef]
- Lim, J.V.; Bee, S.T.; Sin, L.T.; Ratnam, C.T.; Abdul Hamid, Z.A. Fabrication and conductivity of graphite nanosheet/nylon-610 nanocomposites using graphite nanosheets treated with supercritical water at different temperatures. Polymers 2022, 14, 4660. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.I.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Li, R.; Tan, W.; Zhao, X.; Dang, Q.; Song, Q.; Xi, B.; Zhang, X. Evaluation on the methane production potential of wood waste pretreated with NaOH and co-digested with pig manure. Catalysts 2019, 9, 539. [Google Scholar] [CrossRef]
- Wilkins, D.; Rao, S.; Lü, X.; Lee, P. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front. Microbiol. 2015, 6, 1114. [Google Scholar] [CrossRef]
- Hoang, T.; Pham, H.; Tran, Q. A facile microwave-assisted hydrothermal synthesis of graphene quantum dots for organic solar cell efficiency improvement. J. Nanomater. 2020, 2020, 3207909. [Google Scholar] [CrossRef]
- Park, J.H.; Park, J.H.; Seong, H.J.; Sul, W.J.; Jin, K.H.; Park, H.D. Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon. Bioresour. Technol. 2018, 259, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Al-Samet, M.; Goto, M.; Mubarak, N.; Al-Muraisy, S. Evaluating the biomethane potential from the anaerobic co-digestion of palm oil mill effluent, food waste, and sewage sludge in Malaysia. Environ. Sci. Pollut. Res. 2021, 28, 67632–67645. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Xia, Z.; Sun, J.; Dai, X.; Chen, X.; Ni, B. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion. Sci. Total Environ. 2019, 646, 1376–1384. [Google Scholar] [CrossRef]
- Li, H.; Xu, D.; Li, Y.; Feng, H.; Liu, Z.; Li, X.; Gu, T.; Yang, K. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS ONE 2015, 10, e0136183. [Google Scholar] [CrossRef]
- Mohamad, A.N.; Aziz, F.; Yusof, N.; Jaafar, J.; Wan Salleh, W.N.; Jye, L.W.; Ismail, A.F. Recent advances in heavy metal removal by thin film nanocomposite membrane. Water Supply 2023, 23, 3635–3659. [Google Scholar] [CrossRef]
- Deena, S.R.; Kumar, G.; Vickram, A.S.; Rani Singhania, R.; Dong, C.D.; Rohini, K.; Anbarasu, K.; Thanigaivel, S.; Ponnusamy, V.K. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment. Bioresour. Technol. 2022, 359, 127421. [Google Scholar] [CrossRef]
- Gahlot, P.; Ahmed, B.; Brat, S.; Aryal, N. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application. Environ. Technol. Innov. 2020, 20, 101056. [Google Scholar] [CrossRef]
- Nusair, A.; Barber, M.; Pramanik, A.; Ethridge, C.; William, C.; Alkhateb, H.; Ucak-Astarlioglu, M.; Ray, P.C.; D’Alessio, M. Graphene-coated sand for enhanced water reuse: Impact on water quality and chemicals of emerging concern. Sci. Total Environ. 2024, 945, 174078. [Google Scholar] [CrossRef]
- Claes, A.; Melchi, L.; Uludağ-Demirer, S.; Demirer, G. Supplementation of carbon-based conductive materials and trace metals to improve biogas production from apple pomace. Sustainability 2021, 13, 9488. [Google Scholar] [CrossRef]
- Van Steendam, C.; Smets, I.; Skerlos, S.; Raskin, L. Improving anaerobic digestion via DIET requires development of suitable characterization methods. Curr. Opin. Biotechnol. 2019, 57, 183–190. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D.R. Sparking anaerobic digestion: Promoting DIET to enhance methane production. iScience 2020, 23, 101794. [Google Scholar] [CrossRef] [PubMed]
- Muratçobanoğlu, H.; Gökçek, Ö.B.; Muratçobanoğlu, F.; Mert, R.A.; Demirel, S. Biomethane enhancement using reduced graphene oxide in anaerobic digestion of municipal solid waste. Bioresour. Technol. 2022, 354, 127163. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Jiang, Z.; Feng, L.; Pan, J.; Zhu, M.; Ma, C.; Jing, Z.; Jiang, H.; Zhou, H.; et al. Bio-based carbon materials with multiple functional groups and graphene structure to boost methane production from ethanol anaerobic digestion. Bioresour. Technol. 2022, 344, 126353. [Google Scholar] [CrossRef] [PubMed]
- Akshaya, N.B.; Jacob, S. Unification of waste management from fish and vegetable markets through anaerobic co-digestion. Waste Biomass Valorization 2020, 11, 1941–1951. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Demirer, G. Upgrading anaerobic sludge digestion by using an oil refinery by-product. Sustainability 2022, 14, 15693. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.; Pereira, L.; Alves, M. Methane production and conductive materials: A critical review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef]
- Goodarzi, M.; Arjmand, M.; Eskicioglu, C. Nanomaterial-amended anaerobic sludge digestion: Effect of pH as a game changer. Environ. Res. 2024, 240, 117463. [Google Scholar] [CrossRef]
- Ma, S.; Wang, H.; Gao, X.; Bian, C.; Zhu, W. Mitigating ammonia inhibition in anaerobic digestion with lignin-based carbon materials synthesized by hydrothermal carbonization. Carbon Res. 2025, 4, 20. [Google Scholar] [CrossRef]
- Li, Y.; Ma, C.; Ma, J.; Guo, W.; Liu, Y.; Jing, Z.; Xu, Q. Promoting potential direct interspecies electron transfer and methanogenesis with nitrogen- and zinc-doped carbon quantum dots. J. Hazard. Mater. 2021, 410, 124886. [Google Scholar] [CrossRef]
- Gao, F.; Xue, Y.; Deng, P.; Cheng, X.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef]
- Lü, F.; Wang, J.; Shao, L.; He, P. Granular activated carbon for ammonia removal from aqueous solutions: Adsorption characteristics and mechanisms. Water Res. 2016, 100, 1–10. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, L.; Zhong, G.; Huang, Y.; Zhang, X.; Chu, C.; Wang, M. Titanium dioxide nanoparticles induce mitochondrial dynamic imbalance and damage in HT22 cells. J. Nanomater. 2019, 2019, 4607531. [Google Scholar] [CrossRef]
- Wu, F.; Xie, J.; Xin, X.; He, J. Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge. Front. Microbiol. 2022, 13, 999647. [Google Scholar] [CrossRef]
- Charitidis, P.J. Iron-based nanoparticles for enhanced biogas production: Comparative performance analysis and optimization strategies for sustainable anaerobic digestion. Int. Res. J. Innov. Eng. Technol. 2025, 9, 24–38. [Google Scholar] [CrossRef]
- Velasco-Maldonado, P.; Pat-Espadas, A.; Cházaro-Ruiz, L.; Cervantes, F.; Hernández-Montoya, V. Cold oxygen plasma induces changes on the surface of carbon materials enhancing methanogenesis and N2O reduction in anaerobic sludge incubations. J. Chem. Technol. Biotechnol. 2019, 94, 3367–3374. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, S.; Li, X.; Zhang, M.; Zhou, J. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 2017, 224, 41–47. [Google Scholar] [CrossRef]
- Balkanloo, P.G.; Sharifi, K.M.; Marjani, A.P. Graphene quantum dots: Synthesis, characterization, and application in wastewater treatment—A review. Mater. Adv. 2023, 4, 4272–4293. [Google Scholar] [CrossRef]
- Ersahin, M.E.; Tao, Y.; Ozgun, H.; Gimenez, J.B.; Spanjers, H.; van Lier, J.B. Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. J. Membr. Sci. 2017, 526, 387–394. [Google Scholar] [CrossRef]
- Laiq Ur Rehman, M.; Iqbal, A.; Chang, C.C.; Li, W.; Ju, M. Anaerobic digestion. Water Environ. Res. 2019, 91, 1253–1271. [Google Scholar] [CrossRef]
- Jelinkova, S.; Bacova, J.; Rousarova, E.; Nyvltova, P.; Knotek, P.; Capek, J.; Juklíková, M.; Strakova, N.; Apektov, L.; Janka, J. TiO2 P25 nanoparticles induce mitochondrial damage and increased glutathione synthesis in SH-SY5Y neural cells. Food Chem. Toxicol. 2025, 202, 115496. [Google Scholar] [CrossRef] [PubMed]
- Colunga, A.; Rangel-Mendez, J.R.; Celis, L.B.; Cervantes, F.J. Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions. Bioresour. Technol. 2015, 175, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Ci, S.; Cai, P.; Wen, Z.; Li, J. Graphene-based electrode materials for microbial fuel cells. Sci. China Mater. 2015, 58, 496–509. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Wang, H.; Zhao, S.; Li, Y.; Feng, L.; Pan, J.; Zhou, H.; Xu, C. High-efficient synthesis of straw-derived carbon quantum dots for facilitating methanogenic performance in high-load co-digestion of food waste and excess sludge. Chem. Eng. J. 2024, 500, 156792. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Zhang, H.; Feng, L.; Zhou, H.; Pan, J.; Li, Y.; Xu, C. N-doped carbon quantum dots enhance anaerobic digestion under light condition: The performances and potential mechanisms. Chem. Eng. J. 2023, 475, 146359. [Google Scholar] [CrossRef]
- Tan, G.; Yu, H.Q. Benefits of conductive additive for direct interspecies electron transfer in anaerobic digestion. Front. Environ. Sci. Eng. 2025, 19, 170. [Google Scholar] [CrossRef]
- Chang, H.; Wu, H. Graphene-based nanocomposites: Preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 2013, 6, 3483–3507. [Google Scholar] [CrossRef]
- Sousa-Cardoso, F.; Teixeira-Santos, R.; Campos, A.F.; Lima, M.; Gomes, L.C.; Soares, O.S.; Mergulhão, F.J. Graphene-based coating to mitigate biofilm development in marine environments. Nanomaterials 2023, 13, 381. [Google Scholar] [CrossRef]
- Romeu, M.J.; Gomes, L.C.; Sousa-Cardoso, F.; Morais, J.; Vasconcelos, V.; Whitehead, K.A.; Pereira, M.F.R.; Soares, O.S.G.P.; Mergulhão, F.J. How do graphene composite surfaces affect the development and structure of marine cyanobacterial biofilms? Coatings 2022, 12, 1775. [Google Scholar] [CrossRef]
- Lin, L.; Hou, C.; Zhang, X.; Wang, Y.; Chen, Y.; He, T. Highly efficient visible-light-driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl) porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B Environ. 2018, 221, 312–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Arreguín, A.M.; Méndez-Contreras, J.M.; Velasco-Santos, C.; Vallejo-Cantú, N.A.; Rosas-Mendoza, E.S.; Martínez-Sibaja, A.; Alvarado-Lassman, A. Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems. Environments 2025, 12, 392. https://doi.org/10.3390/environments12100392
Salgado-Arreguín AM, Méndez-Contreras JM, Velasco-Santos C, Vallejo-Cantú NA, Rosas-Mendoza ES, Martínez-Sibaja A, Alvarado-Lassman A. Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems. Environments. 2025; 12(10):392. https://doi.org/10.3390/environments12100392
Chicago/Turabian StyleSalgado-Arreguín, Alexa Mariana, Juan Manuel Méndez-Contreras, Carlos Velasco-Santos, Norma Alejandra Vallejo-Cantú, Erik Samuel Rosas-Mendoza, Albino Martínez-Sibaja, and Alejandro Alvarado-Lassman. 2025. "Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems" Environments 12, no. 10: 392. https://doi.org/10.3390/environments12100392
APA StyleSalgado-Arreguín, A. M., Méndez-Contreras, J. M., Velasco-Santos, C., Vallejo-Cantú, N. A., Rosas-Mendoza, E. S., Martínez-Sibaja, A., & Alvarado-Lassman, A. (2025). Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems. Environments, 12(10), 392. https://doi.org/10.3390/environments12100392