Assessment of the Quality of Agricultural Soils in Manica Province (Mozambique)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Preparation of Soil Samples
2.4. Analysis of the Soils
3. Results and Discussion
3.1. Agronomical Chemical Analysis of the Soils
- (i)
- Maize is the highest crop in Mozambique [9,10]. Besides the well-known nitrogen fertilization in maize production, the availability of phosphorous is a critical factor for crop productivity, especially under Africa’s acid soil conditions [17]. In a study on the Nacala corridor (Mozambique), it was suggested to fertilize soils with 32–74 kg P2O5 ha−1 [17].
- (ii)
- Cassava is the second most produced crop in Mozambique [9,10]. Cassava is produced mainly by small-scale, resource-poor farmers, on nutrient-depleted soils [1]. Indeed, cassava can achieve reasonable yields in poor soils, where other crops would not thrive [18]. In Mozambique, about 75% of the economically active population is engaged in agriculture, and the majority in small farms with an average land area of 1.78 ha [18]. A soil of Milha-14 in the coastal Dondo district (Sofala province, Mozambique) was analyzed with the following results [19]: pH = 4.9; P, 6 mg/kg; K, 149 mg/kg; Ca, 215 mg/kg; Mg, 60 mg/kg; Na, 16 mg/kg; and SOM, 1.03%. The cassava tuber yield of this soil was 14.7 ± 2.6 ton/ha. The fertilization of this soil with 60 kg/ha N and with 60 kg/ha P2O5 yielded 27.7 tons/ha [18].
- (iii)
- Soybean production is small, but it is growing in Mozambique, with a yield in the year 2020 of 1.67 t/ha [20]. Besides being used in human and animal nutrition, it is a legume crop that improves soil fertility [20]. The average soybean yield worldwide is 67.8% higher than that of Mozambique [19]. Fertilization with 20 to 30 kg P ha−1, potassium and starter nitrogen, and inoculants, improves soybean yields [19].
- (i)
- All the soils under analysis were deficient in boron, with an average concentration of extractable boron lower than 0.2 mg/kg;
- (ii)
- Soils C4 and C5 from the Sussundenga district had calcium, magnesium and potassium deficiencies;
- (iii)
- Soil C3 from the Sussundenga district had calcium and zinc deficiencies;
- (iv)
- Soil C4 from Sussundenga district had copper and zinc deficiencies.
- (v)
- Soil C1 from the Manica district had an excess of magnesium, manganese and iron;
- (vi)
- Soils C2 from Manica district, and C3 from Sussundenga district, had an excess of manganese and iron.
3.2. ICP-MS Elemental Concentrations
3.3. XRF Elemental Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level page range. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, J.C.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Yanga, S.; Suna, L.; Suna, Y.; Songa, K.; Qina, Q.; Zhu, Z.; Xue, Y. Towards an integrated health risk assessment framework of soil heavy metals pollution: Theoretical basis, conceptual model, and perspectives. Environ. Pollut. 2013, 316, 120596. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Kim, J.E.; Islam, A.; Bilal, M.; Rakib, R.; Nandi, R.; Rahman, M.M.; Islam, T. Heavy metals contamination and associated health risks in food webs—A review focuses on food safety and environmental sustainability in Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 3230–3245. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Xin, X.; Shentu, J.; Zhang, T.; Yang, X.; Baligar, V.C.; He, Z. Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals. Sustainability 2022, 14, 15878. [Google Scholar] [CrossRef]
- Government of Mozambique. Voluntary National Review of Agenda 2030 for Sustainable Development; Government of Mozambique: Maputo, Mozambique, 2020. [Google Scholar]
- Marassiro, M.J.; Romarco de Oliveira, M.L.; Pereira, G.P. Family farming in Mozambique: Characteristics and challenges. Res. Soc. Dev. 2021, 10, e22110615682. [Google Scholar] [CrossRef]
- Maria, R.M.; Yost, R. A Survey of Soil Fertility Status of Four Agroecological Zones of Mozambique. Soil Sci. 2006, 171, 902–914. [Google Scholar] [CrossRef]
- Chichongue, O.; van Tol, J.; Ceronio, G.; Preez, C.D. Effects of Tillage Systems and Cropping Patterns on Soil Physical Properties in Mozambique. Agriculture 2020, 10, 448. [Google Scholar] [CrossRef]
- Serrani, D.; Cocco, S.; Cardelli, V.; D’Ottavio, P.; Rafael, R.B.A.; Feniasse, D.; Vilanculos, A.; Fernández-Marcos, M.L.; Giosué, C.; Tittarelli, F.; et al. Soil fertility in slash and burn agricultural systems in central Mozambique. J. Environ. Manag. 2022, 322, 116031. [Google Scholar] [CrossRef] [PubMed]
- Folmer, E.C.R.; Geurts, P.M.H.; Francisco, J.R. Assessment of soil fertility depletion in Mozambique. Agric. Ecosyst. Environ. 1998, 71, 159–167. [Google Scholar] [CrossRef]
- República de Moçambique, Ministério de Administração Estatal, Perfil do distrito de Manica-Província de Manica. 2005. Available online: www.portaldogoverno.gov.mz (accessed on 31 January 2024).
- Cianciullo, S.; Attorre, F.; Trezza, F.R.; Rezende, M.; Ntumi, C.; Campira, J.; Munjovo, E.T.; Timane, R.D.; Riccardi, T.; Malatesta, L. Analysis of land cover dynamics in Mozambique (2001–2016). Rend. Lincei. Sci. Fis. Nat. 2023, 34, 81–92. [Google Scholar] [CrossRef]
- Nasukaw, H.; Tajima, R.; Muacha, B.; Pereira, M.; Naruo, K.; Nakamura, S.; Fukuda, M.; Ito, T.; Homma, K. Analyzing soil-available phosphorus by the Mehlich-3 extraction method to recommend a phosphorus fertilizer application rate for maize production in northern Mozambique. Plant Prod. Sci. 2019, 22, 211–214. [Google Scholar] [CrossRef]
- Cuvaca, I.B.; Eash, N.S.; Lambert, D.M.; Walker, F.R.; Rustrick, W. Nitrogen, phosphorus, and potassium fertilizer effects on cassava tuber yield in the coastal district of Dondo, Mozambique. Afr. J. Agric. Res. 2017, 12, 3112–3119. [Google Scholar] [CrossRef]
- Omondi, J.; Mkuhlani, S.; Mugo, J.; Chibeba, A.; Chiduwa, M.; Chigeza, G.; Kyei-Boahen, S.; Masikati, P.; Nyagumbo, I. Closing the yield gap of soybean (Glycine max (L.) Merril) in Southern Africa: A case of Malawi, Zambia, and Mozambique. Front. Agron. 2023, 5, 1219490. [Google Scholar] [CrossRef]
- Contaminated Soils-Technical Guide, REFERENCE VALUES, To the ground, Amadora, January 2019, (Review 3-September 2022), Portuguese Environment Agency (APA). Solos Contaminados–Guia Técnico, VALORES DE REFERÊNCIA, PARA O SOLO, AMADORA, JANEIRO DE 2019, (REVISÃO 3–SETEMBRO DE 2022), Agencia Portuguesa do Ambiente (APA). Available online: https://sniambgeoviewer.apambiente.pt/GeoDocs/geoportaldocs/AtQualSolos/Guia_Tecnico_Valores%20de%20Referencia_2019_01.pdf (accessed on 31 January 2024).
- Batista, M.J.; Quentala, L.; Dias, R.; Ramalho, E.; Fernandes, J.; Milisse, D.; Manhiça, V.; Ussene, U.; Cune, G.R.; Daudi, E.X.; et al. Geochemical characterisation of soil of Beira city, Mozambique: Geogenic origin and relation with land cover. J. Geochem. Explor. 2018, 187, 184–200. [Google Scholar] [CrossRef]
- Raso, E.F.; Savaio, S.S.; Mulima, E.P. Impact of artisanal gold mining on agricultural soils: Case of the district of Manica, Mozambique. Rev. Verde Agroecol. Desenvolv. Sustentável 2022, 17, 44–50. [Google Scholar] [CrossRef]
- Leuenberger, A.; Winkler, M.S.; Cambaco, O.; Cossa, H.; Kihwele, F.; Lyatuu, I.; Zabre, H.R.; Farnham, A.; Macete, E.; Munguambe, K. Health impacts of industrial mining on surrounding communities: Local perspectives from three sub-Saharan African countries. PLoS ONE 2021, 16, e0252433. [Google Scholar] [CrossRef]
- Dondeyne, S.; Ndunguru, E.; Rafael, P.; Bannerman, J. Artisanal mining in central Mozambique: Policy and environmental issues of concern. Resour. Policy 2009, 34, 45–50. [Google Scholar] [CrossRef]
- Shahbazi, K.; Marzi, M.; Rezaei, H. Heavy metal concentration in the agricultural soils under the different climatic regions: A case study of Iran. Environ. Earth Sci. 2020, 79, 324. [Google Scholar] [CrossRef]
- Daulta, R.; Prakash, M.; Goyal, S. Metal content in soils of Northern India and crop response: A review. Int. J. Environ. Sci. Technol. 2023, 20, 4521–4548. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Zhou, Y.; Zhang, W.; Feng, D.; Su, X. Heavy metal contamination in Shanghai agricultural soil. Heliyon 2023, 9, e22824. [Google Scholar] [CrossRef] [PubMed]
Property | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
Extractable K (K2O), mg/kg | 157 | 251 | 157 | 40.1 | 49.3 |
149 | 124 | 110 | 45.0 | 37.9 | |
Extractable Mg, mg/kg | 268 | 386 | 128 | 46.4 | 75.8 |
622 | 102 | 121 | 47 | 40.1 | |
Extractable Ca, mg/kg | 916 | 1191 | 512 | 448 | 424 |
1474 | 458 | 641 | 516 | 270 | |
Extractable Fe, mg/kg | 183 | 230 | 117 | 49.3 | 107 |
88.9 | 170 | 81 | 50.9 | 74.3 | |
Extractable Mn, mg/kg | 263 | 307 | 180 | 45.6 | 22.6 |
301 | 163 | 153 | 51.8 | 14.2 | |
Extractable Zn, mg/kg | 1.9 | 1.9 | 0.95 | 2.0 | 3.0 |
1.4 | 1.6 | 0.86 | 1.3 | 2.7 | |
Extractable Cu, mg/kg | 3.5 | 3.6 | 2.0 | 0.45 | 0.60 |
2.2 | 3.2 | 1.4 | 0.42 | 0.38 | |
Extractable B, mg/kg | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
<0.2 | <0.2 | <0.2 | <0.2 | <0.2 | |
Exchangeable Na, cmol(+)/kg | 0.10 | 0.15 | 0.11 | 0.04 | 0.05 |
0.17 | 0.04 | 0.07 | 0.05 | 0.04 | |
Exchangeable K, cmol(+)/kg | 0.33 | 0.44 | 0.39 | 0.14 | 0.16 |
0.39 | 0.31 | 0.33 | 0.15 | 0.12 | |
Exchangeable Ca, cmol(+)/kg | 4.6 | 5.9 | 2.6 | 2.2 | 2.1 |
7.4 | 2.3 | 3.2 | 2.6 | 1.3 | |
Exchangeable Mg, cmol(+)/kg | 2.2 | 3.2 | 1.0 | 0.38 | 0.62 |
5.1 | 0.84 | 0.99 | 0.39 | 0.33 | |
Exchangeable Al, cmol(+)/kg | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 |
<0.025 | <0.025 | <0.025 | <0.025 | <0.03 | |
CEC, cmol(+)/kg | 7.30 | 9.74 | 4.22 | 2.83 | 3.08 |
13.11 | 3.59 | 4.67 | 3.26 | 1.91 | |
pH(KCl) 1:5 | 5.2 | 5.4 | 4.8 | 5.2 | 4.6 |
5.2 | 4.5 | 5.1 | 5.3 | 4.5 | |
pH(H2O) 1:5 | 6.0 | 6.1 | 5.7 | 5.8 | 5.4 |
6.2 | 5.4 | 6.0 | 5.9 | 5.2 | |
Extractable P (P2O5), mg/kg | 132 | 106 | 36.4 | 37.1 | 37.9 |
44.8 | 174 | <20 | 38.5 | 37.3 | |
Organic Carbon (%) | 0.63 | 0.77 | 1.0 | 0.60 | 0.78 |
1.0 | 0.52 | 0.76 | 0.64 | 0.66 | |
Organic Matter (%) | 1.09 | 1.33 | 1.81 | 1.04 | 1.34 |
1.77 | 0.90 | 1.31 | 1.10 | 1.14 | |
Nitrogen Kjeldahl, g/kg | 0.94 | 1.23 | 1.10 | 0.59 | 0.80 |
1.24 | 0.78 | 0.68 | 0.66 | 0.68 | |
Nitrate (N-NO3), mg/kg | 18.5 | 23.2 | 7.0 | 12.0 | 16.9 |
19.8 | 14.5 | 4.7 | 14.3 | 20.1 | |
Conductivity, mS/m | 10.1 | 11.8 | 7.8 | 6.6 | 6.9 |
6.3 | 5.7 | 4.2 | 4.9 | 5.3 | |
Sand, Clay, Silt (USDA) (%) | 62.7, 21.7, 15.6 | 55.2, 26.3, 18.5 | 67.9, 20.3, 11.8 | 77.4, 10.2, 12.4 | 79.4, 13.0, 7.6 |
34.0, 32.3, 33.7 | 71.0, 17.0, 12.0 | 66.4, 19.2, 14.4 | 85.9, 9.7, 4.4 | 78.5, 10.5, 11.0 | |
Texture (USDA) | sandy clay loam | sandy clay loam | sandy clay loam | sandy loam | sandy loam |
clay loam | sandy loam | sandy loam | loamy sand | sandy loam |
Element | C1 | C2 | C3 | C4 | C5 | Reference Value 1 |
---|---|---|---|---|---|---|
As | - | - | - | - | - | |
Sb | - | - | - | - | - | |
Ba | 67 | 32 | 51 | 19 | 17 | 210 |
Be | - | - | - | - | - | |
Cd | - | - | - | - | - | |
Cr | 1400 | 280 | 34 | - | 4.1 | 67 |
Co | 80 | 17 | 7 | - | - | 19 |
Cu | 32 | 13 | 9.1 | - | - | 62 |
Hg | - | - | - | - | - | |
Pb | 8.8 | 6.4 | 13 | 4.3 | 5.1 | 45 |
Mo | - | - | - | - | - | |
Ni | 680 | 78 | 11 | - | - | 37 |
Se | - | - | - | - | - | |
Sn | - | - | - | - | - | |
V | 86 | 36 | 30 | 3.0 | 5.1 | 86 |
Zn | 30 | 17 | 15 | - | 13 | 290 |
Element | C1 | C2 | C3 | C4 | C5 | Reference Value 1 |
---|---|---|---|---|---|---|
K | 5591 (101) | 14,013 (696) | 15,344 (2062) | 40,165 (3925) | 22,545 (1113) | |
6841 (161) | 13,877 (620) | 15,772 (524) | 23,067 (3136) | 22,609 (511) | ||
Ca | 7186 (1327) | 6432 (478) | 2170 (167) | 3703 (659) | 4360 (258) | |
8335 (1046) | 6585(113) | 2450 (1131) | 3057(403) | 3034 (146) | ||
Ti | 3833 (72) | 5814 (849) | 5243 (779) | 2242 (690) | 2073 (65) | |
3798 (159) | 5284 (228) | 4840 (308) | 1353 (29) | 2018 (217) | ||
V | 132 (20) | 97 (27) | - | - | - | 86 |
112 (10) | 24 (42) | - | - | - | ||
Cr | 2675 (308) | 803 (67) | 60 (13) | - | - | 67 |
2543 (119) | 700 (8) | 52 (54) | - | - | ||
Mn | 1429 (238) | 783 (174) | 690 (111) | 318 (34) | 167 (18) | |
1423 (159) | 799 (23) | 686 (115) | 268 (60) | 126 (5) | ||
Fe | 83,114 (6083) | 29,774 (2118) | 22,247 (2373) | 4412 (530) | 5109 (95) | |
75,161 (2541) | 28,393 (960) | 25,610 (3308) | 4048 (553) | 4871 (141) | ||
Co | 44 (38) | 11 (18) | - | - | - | 19 |
49 (46) | - | 11 (20) | - | - | ||
Ni | 823 (70) | 154 (13) | 23 (6) | 4 (8) | 4 (7) | 37 |
684 (42) | 158 (2) | 25 (5) | - | - | ||
Cu | 26 (4) | 14 (1) | - | - | - | 62 |
25 (6) | 17 (3) | 4 (8) | - | - | ||
Zn | 39 (3) | 19 (2) | 16 (1) | - | 4 (6) | 290 |
36 (5) | 22 (3) | 20 (6) | - | - | ||
Rb | 47 (8) | 53 (8) | 91 (4) | 202 (30) | 101 (2) | |
45 (1) | 53 (2) | 84 (3) | 106 (20) | 98 (5) | ||
Sr | 48 (9) | 59 (5) | 49 (2) | 91 (14) | 88 (3) | |
55 (4) | 63 (4) | 38 (5) | 49 (8) | 96 (2) | ||
Zr | 164 (24) | 261 (52) | 393 (53) | 169 (34) | 196 (65) | |
199 (66) | 294 (23) | 292 (18) | 158 (2) | 165 (8) | ||
Ba | - | 256 (3) | - | 414 (71) | 299 (25) | 210 |
- | 256 (22) | - | 294 (19) | 293 (30) | ||
Ta | 29 (4) | - | - | - | - | |
10 (18) | 7 (13) | 12 (11) | - | - | ||
Pb | 3 (6) | 7 (6) | 22 (3) | 30 (10) | 18 (2) | 45 |
3 (6) | 5 (5) | 19 (2) | 17 (2) | 19 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.J.S.L.; Esteves da Silva, J. Assessment of the Quality of Agricultural Soils in Manica Province (Mozambique). Environments 2024, 11, 67. https://doi.org/10.3390/environments11040067
Pereira MJSL, Esteves da Silva J. Assessment of the Quality of Agricultural Soils in Manica Province (Mozambique). Environments. 2024; 11(4):67. https://doi.org/10.3390/environments11040067
Chicago/Turabian StylePereira, Mário J. S. L., and Joaquim Esteves da Silva. 2024. "Assessment of the Quality of Agricultural Soils in Manica Province (Mozambique)" Environments 11, no. 4: 67. https://doi.org/10.3390/environments11040067
APA StylePereira, M. J. S. L., & Esteves da Silva, J. (2024). Assessment of the Quality of Agricultural Soils in Manica Province (Mozambique). Environments, 11(4), 67. https://doi.org/10.3390/environments11040067