Urban Green Spaces in Africa: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Trends and Patterns
3.2. Research Focus Mapping
4. Discussion
4.1. Geographical Scope and Trend of UGS Research
4.2. Research Focus Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN DESA. World Population Prospects 2022 Summary of Results; UN DESA: New York, NY, USA, 2022. [Google Scholar]
- Misiune, I.; Depellegrin, D.; Egarter Vigl, L. Human-Nature Interactions Exploring Nature’s Values across Landscapes; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Gu, C. Urbanization: Processes and driving forces. Sci. China Earth Sci. 2019, 62, 1351–1360. [Google Scholar] [CrossRef]
- Atmiş, E.; Özden, S.; Lise, W. Urbanization pressures on the natural forests in Turkey: An overview. Urban For. Urban Green. 2007, 6, 83–92. [Google Scholar] [CrossRef]
- Yeh, C.T.; Huang, S.L. Global urbanization and demand for natural resources. In Carbon Sequestration in Urban Ecosystems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 355–371. [Google Scholar]
- Schott, D. Urban Development and Environment. Basic Environ. Hist. 2014, 4, 171–198. [Google Scholar] [CrossRef]
- Elmqvist, T. The Urban Planet: Challenges and Opportunities for Sustainability. In City Policies and the European Urban Agenda; Springer: Berlin/Heidelberg, Germany, 2019; pp. 173–193. [Google Scholar] [CrossRef]
- Thorn, J.P.R.; Aleu, R.B.; Wijesinghe, A.; Mdongwe, M.; Marchant, R.A.; Shackleton, S. Mainstreaming nature-based solutions for climate resilient infrastructure in peri-urban sub-Saharan Africa. Landsc. Urban Plan. 2021, 216, 104235. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef]
- Panno, A.; Carrus, G.; Lafortezza, R.; Mariani, L.; Sanesi, G. Nature-based solutions to promote human resilience and wellbeing in cities during increasingly hot summers. Environ. Res. 2017, 159, 249–256. [Google Scholar] [CrossRef]
- Nielsen, H.; Player, K.M.B. Urban Green Space Interventions and Health. 2009. Available online: http://www.euro.who.int/pubrequest (accessed on 23 December 2023).
- UNEP; UN-Habitat. Global Environment for Cities-GEO for Cities: Towards Green and Just Cities; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- IUCN. Nature-based solutions to address global societal challenges. In IUCN International Union for Conservation of Nature; IUCN: Gland, Switzerland, 2016. [Google Scholar] [CrossRef]
- Huang, Y.; Yesilonis, I.; Szlavecz, K. Soil microarthropod communities of urban green spaces in Baltimore, Maryland, USA. Urban For. Urban Green. 2020, 53, 126676. [Google Scholar] [CrossRef]
- Aida, N.; Sasidhran, S.; Kamarudin, N.; Aziz, N.; Puan, C.L.; Azhar, B. Woody trees, green space and park size improve avian biodiversity in urban landscapes of Peninsular Malaysia. Ecol. Indic. 2016, 69, 176–183. [Google Scholar] [CrossRef]
- Muluneh, M.G.; Worku, B.B. Contributions of urban green spaces for climate change mitigation and biodiversity conservation in Dessie city, Northeastern Ethiopia. Urban Clim. 2022, 46, 101294. [Google Scholar] [CrossRef]
- Wortzel, J.D.; Wiebe, D.J.; DiDomenico, G.E.; Visoki, E.; South, E.; Tam, V.; Greenberg, D.M.; Brown, L.A.; Gur, R.C.; Gur, R.E.; et al. Association Between Urban Greenspace and Mental Wellbeing During the COVID-19 Pandemic in a U.S. Cohort. Front. Sustain. Cities 2021, 3, 686159. [Google Scholar] [CrossRef]
- Wang, J.; Liu, N.; Zou, J.; Guo, Y.; Chen, H. The health perception of urban green spaces and its emotional impact on young adults: An empirical study from three cities in China. Front. Public Health 2023, 11, 1232216. [Google Scholar] [CrossRef]
- Ai, H.; Zhang, X.; Zhou, Z. The impact of greenspace on air pollution: Empirical evidence from China. Ecol. Indic. 2023, 146, 109881. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Min, M.; Zhang, Y.; Dai, Y.; Tang, L. Do We Need More Urban Green Space to Alleviate PM2.5 Pollution? A Case Study in Wuhan, China. Land 2022, 11, 776. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Han, D.; Gao, J.; Yao, Y. Research on Promoting Carbon Sequestration of Urban Green Space Distribution Characteristics and Planting Design Models in Xi’an. Sustainability 2022, 15, 572. [Google Scholar] [CrossRef]
- Silva, L.T.; Fonseca, F.; Pires, M.; Mendes, B. SAUS: A tool for preserving urban green areas from air pollution. Urban For. Urban Green. 2019, 46, 126440. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Cheung, P.K.; Livesley, S.J.; Nice, K.A. Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustain. Cities Soc. 2021, 71, 102974. [Google Scholar] [CrossRef]
- Kirschner, V.; Macků, K.; Moravec, D.; Maňas, J. Measuring the relationships between various urban green spaces and local climate zones. Sci. Rep. 2023, 13, 9799. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; Alharbi, B.H.; Al-Shamsi, M.A.; Alshahrani, T.S.; Al-Namazi, A.A.; Alharbi, S.F.; Alotaibi, F.S.; Qian, Y. Assessing the response of five tree species to air pollution in Riyadh City, Saudi Arabia, for potential green belt application. Environ. Sci. Pollut. Res. 2020, 27, 29156–29170. [Google Scholar] [CrossRef]
- Dupuy, S.; Defrise, L.; Lebourgeois, V.; Gaetano, R.; Burnod, P.; Tonneau, J.P. Analyzing urban agriculture’s contribution to a southern city’s resilience through land cover mapping: The case of Antananarivo, capital of Madagascar. Remote Sens. 2020, 12, 1962. [Google Scholar] [CrossRef]
- Sardeshpande, M.; Shackleton, C. Fruits of the city: The nature, nurture and future of urban foraging. People Nat. 2023, 5, 213–227. [Google Scholar] [CrossRef]
- Opoku, A.; Duff, A.; Yahia, M.W.; Ekung, S. Utilisation of green urban space for food sufficiency and the realisation of the sustainable development goals—UK stakeholders perspective. Geogr. Sustain. 2023, 5, 13–18. [Google Scholar] [CrossRef]
- Akpinar, A. How is quality of urban green spaces associated with physical activity and health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Carpenter, M. From ‘healthful exercise’ to ‘nature on prescription’: The politics of urban green spaces and walking for health. Landsc. Urban Plan. 2013, 118, 120–127. [Google Scholar] [CrossRef]
- De Haas, W.; Hassink, J.; Stuiver, M. The Role of Urban Green Space in Promoting Inclusion: Experiences from the Netherlands. Front. Environ. Sci. 2021, 9, 618198. [Google Scholar] [CrossRef]
- Cilliers, S.; Siebert, S.; Du Toit, M.; Barthel, S.; Mishra, S.; Cornelius, S.; Davoren, E. Garden ecosystem services of Sub-Saharan Africa and the role of health clinic gardens as social-ecological systems. Landsc. Urban Plan. 2018, 180, 294–307. [Google Scholar] [CrossRef]
- UN. New Urban Agenda; Habitat III Secretariat: Quito, Ecuador, 2016. [Google Scholar]
- UN. The Sustainable Development Goals Report; UN: New York, NY, USA, 2022. [Google Scholar]
- Sánchez, F.G.; Solecki, W.D.; Batalla, C.R. Climate change adaptation in Europe and the United States: A comparative approach to urban green spaces in Bilbao and New York City. Land Use Policy 2018, 79, 164–173. [Google Scholar] [CrossRef]
- Sánchez, F.G.; Govindarajulu, D. Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India. Land Use Policy 2023, 124, 106455. [Google Scholar] [CrossRef]
- De la Sota, C.; Ruffato-Ferreira, V.J.; Ruiz-García, L.; Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 2019, 40, 145–151. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, X.; Harris, C.D.; Holt, J.B.; Croft, J.B. Spatial Disparities in the Distribution of Parks and Green Spaces in the USA. Ann. Behav. Med. 2013, 45 (Suppl. 1), S18–S27. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Maheswaran, R. The health benefits of urban green spaces: A review of the evidence. J. Public Health 2011, 33, 212–222. [Google Scholar] [CrossRef]
- Sun, Y.; Saha, S.; Tost, H.; Kong, X.; Xu, C. Literature Review Reveals a Global Access Inequity to Urban Green Spaces. Sustainability 2022, 14, 1062. [Google Scholar] [CrossRef]
- Allegretto, G.; Kendal, D.; Flies, E.J. A systematic review of the relationship between urban forest quality and socioeconomic status or race. Urban For. Urban Green. 2022, 74, 127664. [Google Scholar] [CrossRef]
- Jim, C.Y.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Kronenberg, J.; Łaszkiewicz, E.; Andersson, E.; Biernacka, M. Popular but exclusive: How can lower socio-economic status groups win access to urban green spaces? Geoforum 2023, 143, 103774. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L. Investigation on urban greenspace in relation to sociodemographic factors and health inequity based on different greenspace metrics in 3 US urban communities. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 218–228. [Google Scholar] [CrossRef]
- Csomós, G.; Farkas, Z.J.; Kolcsár, R.A.; Szilassi, P.; Kovács, Z. Measuring socio-economic disparities in green space availability in post-socialist cities. Habitat Int. 2021, 117, 102434. [Google Scholar] [CrossRef]
- Hoffimann, E.; Barros, H.; Ribeiro, A.I. Socioeconomic inequalities in green space quality and Accessibility—Evidence from a Southern European city. Int. J. Environ. Res. Public Health 2017, 14, 916. [Google Scholar] [CrossRef]
- OECD/UN ECA/AfDB. Africa’s Urbanisation Dynamics 2022: The Economic Power of Africa’s Cities; OECD: Paris, France, 2022. [Google Scholar] [CrossRef]
- Gulati, M.; Scholtz, L. The Case for Investment in Green Infrastructure in African Cities; WWF South Africa: Cape Town, South Africa, 2020; Available online: www.org.za (accessed on 23 December 2023).
- Cilliers, S.; Cilliers, J.; Lubbe, R.; Siebert, S. Ecosystem services of urban green spaces in African countries-perspectives and challenges. Urban Ecosyst. 2013, 16, 681–702. [Google Scholar] [CrossRef]
- Lindley, S.; Pauleit, S.; Yeshitela, K.; Cilliers, S.; Shackleton, C. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 2018, 180, 328–338. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Meng, L.; Wen, K.H.; Brewin, R.; Wu, Q. Knowledge Atlas on the Relationship between Urban Street Space and Residents’ Health—A Bibliometric Analysis Based on VOSviewer and CiteSpace. Sustainability 2020, 12, 2384. [Google Scholar] [CrossRef]
- van der Walt, L.; Cilliers, S.S.; Toit, M.J.D.; Kellner, K. Conservation of fragmented grasslands as part of the urban green infrastructure: How important are species diversity, functional diversity and landscape functionality? Urban Ecosyst. 2015, 18, 87–113. [Google Scholar] [CrossRef]
- De Lacy, P.; Shackleton, C.M. Woody plant species richness, composition and structure in urban sacred sites, Grahamstown, South Africa. Urban Ecosyst. 2017, 20, 1169–1179. [Google Scholar] [CrossRef]
- Gwedla, N.; Shackleton, C.M. Population size and development history determine street tree distribution and composition within and between Eastern Cape towns, South Africa. Urban For. Urban Green. 2017, 25, 11–18. [Google Scholar] [CrossRef]
- Mavimbela, L.Z.; Sieben, E.J.J.; Procheş, Ş. Invasive alien plant species, fragmentation and scale effects on urban forest community composition in Durban, South Africa. N. Z. J. For. Sci. 2018, 48, 19. [Google Scholar] [CrossRef]
- Arabomen, O.J.; Chirwa, W.; Babalola, F.D. Willingness-to-pay for environmental services provided by trees in core and fringe areas of Benin City, Nigeria. Int. For. Rev. 2019, 21, 23–36. [Google Scholar] [CrossRef]
- Nigussie, S.; Liu, L.; Yeshitela, K. Indicator development for assessing recreational ecosystem service capacity of urban green spaces—A participatory approach. Ecol. Indic. 2021, 121, 107026. [Google Scholar] [CrossRef]
- Damptey, F.G.; Opuni-Frimpong, N.Y.; Arimiyaw, A.W.; Bentsi-Enchill, F.; Wiafe, E.D.; Abeyie, B.B.; Mensah, M.K.; Debrah, D.K.; Yeboah, A.O.; Opuni-Frimpong, E. Citizen Science Approach for Assessing the Biodiversity and Ecosystem Service Potential of Urban Green Spaces in Ghana. Land 2022, 11, 1774. [Google Scholar] [CrossRef]
- Puplampu, D.A.; Boafo, Y.A. Exploring the impacts of urban expansion on green spaces availability and delivery of ecosystem services in the Accra metropolis. Environ. Chall. 2021, 5, 100283. [Google Scholar] [CrossRef]
- Koricho, H.H.; Seboka, A.D.; Fufa, F.; Gebreyesus, T.; Song, S. Study on the ecosystem services of urban forests: Implications for climate change mitigation in the case of Adama City of Oromiya Regional Sate, Ethiopia. Urban Ecosyst. 2022, 25, 575–584. [Google Scholar] [CrossRef]
- Alemayehu, G.; Beyene, G.A.; Borishe, E.N. Public Urban green spaces’ visiting habits and perception regarding their health benefits in Addis Ababa City, Ethiopia. Int. J. Environ. Prot. Policy 2021, 9, 50–58. [Google Scholar] [CrossRef]
- Frimpong, S.K.; Koranteng, S.S. Levels and human health risk assessment of heavy metals in surface soil of public parks in Southern Ghana. Environ. Monit. Assess. 2019, 191, 588. [Google Scholar] [CrossRef]
- Zewdie, H.Y.; Whetten, K.; Dubie, M.E.; Kenea, B.; Bekele, T.; Temesgen, C.; Molla, W.; Puffer, E.S.; Ostermann, J.; Hobbie, A.M.; et al. The association between urban greenspace and psychological health among young adults in Addis Ababa, Ethiopia. Environ. Res. 2022, 215, 114258. [Google Scholar] [CrossRef]
- Yessoufou, K.; Sithole, M.; Elansary, H.O. Effects of urban green spaces on human perceived health improvements: Provision of green spaces is not enough but how people use them matters. PLoS ONE 2020, 15, e0239314. [Google Scholar] [CrossRef]
- Afrad, A.; Kawazoe, Y. Can interaction with informal urban green space reduce depression levels? An analysis of potted street gardens in Tangier. Morocco. Public Health 2020, 186, 83–86. [Google Scholar] [CrossRef]
- Bartels, C.A.; Lambert, E.V.; Young, M.E.M.; Kolbe-Alexander, T. If You Build It Will They Come? Park Upgrades, Park Use and Park-Based Physical Activity in Urban Cape Town, South Africa—The SUN Study. Int. J. Environ. Res. Public Health 2023, 20, 2574. [Google Scholar] [CrossRef]
- Akinsola, F.A.; Ologundudu, M.M.; Akinsola, M.O.; Odhiambo, N.M. Industrial development, urbanization and pollution nexus in Africa. Heliyon 2022, 8, e11299. [Google Scholar] [CrossRef]
- Duan, X.; Li, X.; Tan, W.; Xiao, R. Decoupling relationship analysis between urbanization and carbon emissions in 33 African countries. Heliyon 2022, 8, e10423. [Google Scholar] [CrossRef]
- Kamana, A.A.; Radoine, H.; Nyasulu, C. Urban challenges and strategies in African cities—A systematic literature review. City Environ. Interact. 2024, 21, 100132. [Google Scholar] [CrossRef]
- Farkas, J.Z.; Hoyk, E.; de Morais, M.B.; Csomós, G. A systematic review of urban green space research over the last 30 years: A bibliometric analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef]
- Dabiri, Z.; Blaschke, T. Scale matters: A survey of the concepts of scale used in spatial disciplines. Eur. J. Remote Sens. 2019, 52, 419. [Google Scholar] [CrossRef]
- Awoyemi, A.G.; Alamo, J.D.I. Status of urban ecology in Africa: A systematic review. Landsc. Urban Plan. 2023, 233, 104707. [Google Scholar] [CrossRef]
- Güneralp, B.; Lwasa, S.; Masundire, H.; Parnell, S.; Seto, K.C. Urbanization in Africa: Challenges and opportunities for conservation. Environ. Res. Lett. 2018, 13, 015002. [Google Scholar] [CrossRef]
- International Monetary Fund (IMF). Regional Economic Outlook, Sub-Saharan Africa, October 2023; International Monetary Fund: Bretton Woods, NH, USA, 2023. [Google Scholar] [CrossRef]
- Roodsari, E.N.; Hoseini, P. An assessment of the correlation between urban green space supply and socio-economic disparities of Tehran districts—Iran. Environ. Dev. Sustain. 2022, 24, 12867–12882. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Song, Y.; Webster, C.; Xu, B.; Gong, P. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 2022, 13, 4636. [Google Scholar] [CrossRef]
- Jamalishahni, T.; Turrell, G.; Foster, S.; Davern, M.; Villanueva, K. Neighbourhood socio-economic disadvantage and loneliness: The contribution of green space quantity and quality. BMC Public Health 2023, 23, 598. [Google Scholar] [CrossRef]
- Guadie, D.; Getahun, T.; Asnake, K.; Demissew, S. Multifunctional Urban Green Infrastructure Development in a Sub-Saharan Country: The Case of Friendship Square Park, Addis Ababa, Ethiopia. Sustainability 2022, 14, 12618. [Google Scholar] [CrossRef]
- Cheng, X.; Peng, J.; Dong, J.; Liu, Y.; Wang, Y. Non-linear effects of meteorological variables on cooling efficiency of African urban trees. Environ. Int. 2022, 169, 107489. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. Effect of landscape pattern and spatial configuration of vegetation patches on urban warming and cooling in Harare metropolitan city, Zimbabwe. GI Sci. Remote Sens. 2021, 58, 261–280. [Google Scholar] [CrossRef]
- Kowe, P.; Dube, T.; Mushore, T.D.; Ncube, A.; Nyenda, T.; Mutowo, G.; Chinembiri, T.S.; Traore, M.; Kizilirmak, G. Impacts of the spatial configuration of built-up areas and urban vegetation on land surface temperature using spectral and local spatial autocorrelation indices. Remote Sens. Lett. 2022, 13, 1222–1235. [Google Scholar] [CrossRef]
- Van de Walle, J.; Brousse, O.; Arnalsteen, L.; Brimicombe, C.; Byarugaba, D.; Demuzere, M.; Jjemba, E.; Lwasa, S.; Misiani, H.; Nsangi, G.; et al. Lack of vegetation exacerbates exposure to dangerous heat in dense settlements in a tropical African city. Environ. Res. Lett. 2022, 17, 024004. [Google Scholar] [CrossRef]
- Obame-Nkoghe, J.; Makanga, B.K.; Zongo, S.B.; Koumba, A.A.; Komba, P.; Longo-Pendy, N.-M.; Mounioko, F.; Akone-Ella, R.; Nkoghe-Nkoghe, L.C.; Ngangue-Salamba, M.-F.; et al. Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa). Int. J. Environ. Res. Public Health 2023, 10, 5774. [Google Scholar] [CrossRef]
- Mabusela, A.; Shackleton, C.M.; Gwedla, N. The distribution of selected woody invasive alien species in small towns in the Eastern Cape, South Africa. S. Afr. J. Bot. 2021, 141, 290–295. [Google Scholar] [CrossRef]
- De Lacy, P.; Shackleton, C.M. The comparative growth rates of indigenous street and garden trees in Grahamstown, South Africa. S. Afr. J. Bot. 2014, 92, 94–96. [Google Scholar] [CrossRef]
- Ebenezer, T.E.; Muigai, A.W.T.; Nouala, S.; Badaoui, B.; Blaxter, M.; Buddie, A.G.; Jarvis, E.D.; Korlach, J.; Kuja, J.O.; Lewin, H.A.; et al. Africa: Sequence 100,000 species to safeguard biodiversity. Nature 2022, 603, 388–392. [Google Scholar] [CrossRef]
- Chapman, C.A.; Abernathy, K.; Chapman, L.J.; Downs, C.; Effiom, E.O.; Gogarten, J.F.; Golooba, M.; Kalbitzer, U.; Lawes, M.J.; Mekonnen, A.; et al. The future of sub-Saharan Africa’s biodiversity in the face of climate and societal change. Front. Ecol. Evol. 2022, 10, 790552. [Google Scholar] [CrossRef]
- Nero, B.F.; Anning, A.K. Variations in soil characteristics among urban green spaces in Kumasi, Ghana. Environ. Earth Sci. 2018, 77, 317. [Google Scholar] [CrossRef]
- Fan, K.; Chu, H.; Eldridge, D.J.; Gaitan, J.J.; Liu, Y.-R.; Sokoya, B.; Wang, J.-T.; Hu, H.-W.; He, J.-Z.; Sun, W.; et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 2023, 7, 113–126. [Google Scholar] [CrossRef]
- Liu, Y.-R.; van der Heijden, M.G.A.; Riedo, J.; Sanz-Lazaro, C.; Eldridge, D.J.; Bastida, F.; Moreno-Jiménez, E.; Zhou, X.-Q.; Hu, H.-W.; He, J.-Z.; et al. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 2023, 14, 1706. [Google Scholar] [CrossRef]
- Beroigui, M.; Naylo, A.; Walczak, M.; Hafidi, M.; Charzyński, P.; Świtoniak, M.; Różański, S.; Boularbah, A. Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements. Catena 2020, 194, 104673. [Google Scholar] [CrossRef]
- Ng’etich, J.; Kiplagat, A.; Khazenzi, J.; Odhiambo, K.; Lagat, M.J. Citizen Perception of Green Spaces Prioritization in Urban Kenya: The Case of Kisumu City and Eldoret Municipality. AER J. 2022, 5, 68–76. [Google Scholar]
- Djikpo, V.R.; Teka, O.; Djossa, A.B.; Sinsin, B. Understanding Coastal Citizens Perception on Urban Green Spaces: Evidence from Benin Republic in West Africa. ESI Prepr. 2022, 10, 709. [Google Scholar] [CrossRef]
- Gwedla, N.; Shackleton, C.M. Perceptions and preferences for urban trees across multiple socio-economic contexts in the Eastern Cape, South Africa. Landsc. Urban Plan. 2019, 189, 225–234. [Google Scholar] [CrossRef]
- Tohoun, B.A.; Sapena, M.; Mast, J.; Taubenböck, H.; Haruna, I.; Orekan, V.; Okhimamhe, A.A. Are citizens’ perceptions on urban green spaces influenced by their immediate environment? The case of Grand Nokoue, Benin Republic. In 2023 Joint Urban Remote Sensing Event (JURSE); IEEE: Piscataway, NJ, USA, 2023; Available online: https://ieeexplore.ieee.org/abstract/document/10144198/ (accessed on 8 October 2023).
- Shackleton, C.M.; Blair, A. Perceptions and use of public green space is influenced by its relative abundance in two small towns in South Africa. Landsc. Urban Plan. 2013, 113, 104–112. [Google Scholar] [CrossRef]
- Pedrosa, E.L.J.; Okyere, S.A.; Frimpong, L.K.; Diko, S.K.; Commodore, T.S.; Kita, M. Planning for Informal Urban Green Spaces in African Cities: Children’s Perception and Use in Peri-Urban Areas of Luanda, Angola. Urban Sci. 2021, 5, 50. [Google Scholar] [CrossRef]
- Kefale, A.; Fetene, A.; Desta, H. Users’ preferences and perceptions towards urban green spaces in rapidly urbanized cities: The case of Debre Berhan and Debre Markos, Ethiopia. Heliyon 2023, 9, e15262. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xu, N. Climatic factors dominate the spatial patterns of urban green space coverage in the contiguous United States. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102691. [Google Scholar] [CrossRef]
- Bille, R.A.; Jensen, K.E.; Buitenwerf, R. Global patterns in urban green space are strongly linked to human development and population density. Urban For. Urban Green. 2023, 86, 127980. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Clinton, N.; Yu, L.; Huang, H.; Dronova, I.; Jin, J. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 2021, 16, 064072. [Google Scholar] [CrossRef]
- Kuang, W. Mapping global impervious surface area and green space within urban environments. Sci. China Earth Sci. 2019, 62, 1591–1606. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. The increase of impervious cover and decrease of tree cover within urban areas globally (2012–2017). Urban For. Urban Green. 2020, 49, 126638. [Google Scholar] [CrossRef]
- Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Chang. 2021, 71, 102385. [Google Scholar] [CrossRef]
- Yin, Z.; Kuang, W.; Bao, Y.; Dou, Y.; Chi, W.; Ochege, F.U.; Pan, T. Evaluating the dynamic changes of urban land and its fractional covers in Africa from 2000–2020 using time series of remotely sensed images on the big data platform. Remote Sens. 2021, 13, 4288. [Google Scholar] [CrossRef]
- Ghermandi, A.; Depietri, Y.; Sinclair, M. In the AI of the beholder: A comparative analysis of computer vision-assisted characterizations of human-nature interactions in urban green spaces. Landsc. Urban Plan. 2022, 217, 104261. [Google Scholar] [CrossRef]
- Araújo, H.C.d.L.; Martins, F.S.; Cortese, T.T.P.; Locosselli, G.M. Artificial intelligence in urban forestry—A systematic review. Urban For. Urban Green. 2021, 66, 127410. [Google Scholar] [CrossRef]
No | Country | Contribution (%) |
---|---|---|
1 | South Africa | 25 |
2 | Ethiopia | 13 |
3 | Ghana | 13 |
4 | Nigeria | 12 |
5 | Egypt | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhoza, J.P.; Zhou, W. Urban Green Spaces in Africa: A Bibliometric Analysis. Environments 2024, 11, 68. https://doi.org/10.3390/environments11040068
Muhoza JP, Zhou W. Urban Green Spaces in Africa: A Bibliometric Analysis. Environments. 2024; 11(4):68. https://doi.org/10.3390/environments11040068
Chicago/Turabian StyleMuhoza, Jean Pierre, and Weiqi Zhou. 2024. "Urban Green Spaces in Africa: A Bibliometric Analysis" Environments 11, no. 4: 68. https://doi.org/10.3390/environments11040068
APA StyleMuhoza, J. P., & Zhou, W. (2024). Urban Green Spaces in Africa: A Bibliometric Analysis. Environments, 11(4), 68. https://doi.org/10.3390/environments11040068