Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste
Abstract
:1. Introduction
2. Review Methodology
Bibliometric Analysis of Previous Studies
3. Results and Discussion
3.1. Goal and Scope Definition
3.1.1. Functional Unit
3.1.2. System Boundary
3.2. Life Cycle Inventory Analysis (LCI)
Data Sources
3.3. Life Cycle Impacts Assessment (LCIA)
3.3.1. The Use of LCA Software
3.3.2. Scenario Comparisons Used
Focusing AD Parameters
Comparing AD with Other Methods
Cascaded Treatment
3.4. LCA Results Interpretation
3.4.1. Comparing AD with Other Methods
3.4.2. Sensitivity Analysis
3.4.3. Uncertainty Analysis
3.4.4. Contribution Analysis
3.4.5. Inventory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0 A Global Snapshot of Solid Waste Management to 2050 Overview; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Sharma, K.D.; Jain, S. Municipal solid waste generation, composition, and management: The global scenario. Soc. Responsib. J. 2020, 16, 917–948. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Rajaeifar, M.A.; Kumar, R.; Behnia, M. A systematic review on life cycle assessment of different waste to energy valorization technologies. J. Clean. Prod. 2021, 290, 125747. [Google Scholar] [CrossRef]
- Epa, U.; Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021—Main Report. 2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 (accessed on 1 July 2024).
- Mavakala, B.K.; Le Faucheur, S.; Mulaji, C.K.; Laffite, A.; Devarajan, N.; Biey, E.M.; Giuliani, G.; Otamonga, J.P.; Kabatusuila, P.; Mpiana, P.T.; et al. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manag. 2016, 55, 238–248. [Google Scholar] [CrossRef]
- Adghim, M.; Abdallah, M.; Saad, S.; Shanableh, A.; Sartaj, M.; El Mansouri, A.E. Comparative life cycle assessment of anaerobic co-digestion for dairy waste management in large-scale farms. J. Clean. Prod. 2020, 256, 120320. [Google Scholar] [CrossRef]
- Staley, B.F.; Boxman, S. Data & Policy Program Data driven analysis to drive sustainable materials management State of the Practice of Organic Waste Management and Collection in Canada. 2021. Available online: https://partnersinprojectgreen.com/wp-content/uploads/2023/03/Consultant-Report_Overview-Canadian-ICI-Organic-Waste-Practices_Spring-2021.pdf (accessed on 1 July 2024).
- Environment and Climate Change Canada. National Waste Characterization Report: The Composition of Canadian Residual Municipal Solid Waste. 2020. Available online: https://publications.gc.ca/site/eng/9.884760/publication.html (accessed on 1 July 2024).
- ISO 14044; Environmental Management-Life Cycle Assessment-Requirements and Guidelines Management Environnemental-Analyse du Cycle de Vie-Exigences et Lignes Directrices Copyright International Organization for Standardization Provided by IHS under License with ISO Not for Resale No Reproduction or Networking Permitted without License from IHS from IHS. International Organization for Standardization: Geneva, Switzerland, 2006.
- Lee, E.; Oliveira, D.S.B.L.; Oliveira, L.S.B.L.; Jimenez, E.; Kim, Y.; Wang, M.; Ergas, S.J.; Zhang, Q. Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management. Water Res. 2020, 171, 115443. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S.A. Life cycle assessment on the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration. Waste Manag. 2021, 130, 93–106. [Google Scholar] [CrossRef]
- Demichelis, F.; Tommasi, T.; Deorsola, F.A.; Marchisio, D.; Mancini, G.; Fino, D. Life cycle assessment and life cycle costing of advanced anaerobic digestion of organic fraction municipal solid waste. Chemosphere 2022, 289, 133058. [Google Scholar] [CrossRef]
- Liu, K.; Lv, L.; Li, W.; Ren, Z.; Wang, P.; Liu, X.; Gao, W.; Sun, L.; Zhang, G. A comprehensive review on food waste anaerobic co-digestion: Research progress and tendencies. Sci. Total Environ. 2023, 878, 163155. [Google Scholar] [CrossRef]
- Yaser, A.Z.; Lamaming, J.; Suali, E.; Rajin, M.; Saalah, S.; Kamin, Z.; Safie, N.N.; Aji, N.A.S.; Wid, N. Composting and Anaerobic Digestion of Food Waste and Sewage Sludge for Campus Sustainability: A Review. Int. J. Chem. Eng. 2022, 2022, 6455889. [Google Scholar] [CrossRef]
- Nhubu, T.; Muzenda, E.; Belaid, M. Life Cycle Assessment of Anaerobic Digestion: A Review of Findings and Opportunities for Anaerobic Digestion Development in Sub-Saharan Africa. Proceedings of 2021 9th International Renewable and Sustainable Energy Conference, IRSEC 2021, Virtual, 23–27 November 2021. [Google Scholar] [CrossRef]
- Mulya, K.S.; Zhou, J.; Phuang, Z.X.; Laner, D.; Woon, K.S. A systematic review of life cycle assessment of solid waste management: Methodological trends and prospects. Sci. Total Environ. 2022, 831, 154903. [Google Scholar] [CrossRef]
- Sridhar, A.; Kapoor, A.; Senthil Kumar, P.; Ponnuchamy, M.; Balasubramanian, S.; Prabhakar, S. Conversion of food waste to energy: A focus on sustainability and life cycle assessment. Fuel 2021, 302, 121069. [Google Scholar] [CrossRef]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.D.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef]
- Piadeh, F.; Offie, I.; Behzadian, K.; Rizzuto, J.P.; Bywater, A.; Córdoba-Pachón, J.R.; Walker, M. A critical review for the impact of anaerobic digestion on the sustainable development goals. J. Environ. Manag. 2024, 349, 119458. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Tominac, P.; Aguirre-Villegas, H.; Sanford, J.; Larson, R.; Zavala, V. Evaluating Landfill Diversion Strategies for Municipal Organic Waste Management Using Environmental and Economic Factors. ACS Sustain. Chem. Eng. 2021, 9, 489–498. [Google Scholar] [CrossRef]
- Francini, G.; Lombardi, L.; Freire, F.; Pecorini, I.; Marques, P. Environmental and Cost Life Cycle Analysis of Different Recovery Processes of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Waste Biomass Valorization 2019, 10, 3613–3634. [Google Scholar] [CrossRef]
- Balcioglu, G.; Jeswani, H.K.; Azapagic, A. Evaluating the environmental and economic sustainability of energy from anaerobic digestion of different feedstocks in Turkey. Sustain. Prod. Consum. 2022, 32, 924–941. [Google Scholar] [CrossRef]
- Sahoo, K.; Mani, S. Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops. Renew. Sustain. Energy Rev. 2019, 115, 109354. [Google Scholar] [CrossRef]
- Wang, Y.; Baral, N.R.; Yang, M.; Scown, C.D. Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-Negative Fuels and Bioplastics. Environ. Sci. Technol. 2023, 57, 2958–2969. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada, En81-4-2021-1-eng. 2023. Available online: https://www.canada.ca/en/environment-climate-change.html (accessed on 28 September 2024).
- Witcover, J.; Purdon, M.; Murphy, C.; Striepe, M.C.; Maclean, H.L.; Fulton, L. Comparison of the Canadian Clean Fuel Regulations with Fuel Carbon Intensity Standards in California, Oregon and British Columbia ii. 2022. Available online: https://decarbonisation.uqam.ca/wp-content/uploads/sites/10/2022/10/WitcoverEtAl_JCCTRP_WG5_2022_Final_6oct2022.pdf (accessed on 1 July 2024).
- Weligama Thuppahige, R.T.; Babel, S. Environmental impact assessment of organic fraction of municipal solid waste treatment by anaerobic digestion in Sri Lanka. Waste Manag. Res. 2022, 40, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland. J. Clean. Prod. 2021, 280, 125034. [Google Scholar] [CrossRef]
- Chen, R.; Yuan, S.; Chen, S.; Ci, H.; Dai, X.; Wang, X.; Li, C.; Wang, D.; Dong, B. Life-cycle assessment of two sewage sludge-to-energy systems based on different sewage sludge characteristics: Energy balance and greenhouse gas-emission footprint analysis. J. Environ. Sci. 2022, 111, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Pasciucco, F.; Francini, G.; Pecorini, I.; Baccioli, A.; Lombardi, L.; Ferrari, L. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. J. Clean. Prod. 2023, 401, 136762. [Google Scholar] [CrossRef]
- Nyitrai, J.; Almansa, X.F.; Zhu, K.; Banerjee, S.; Hawkins, T.R.; Urgun-Demirtas, M.; Raskin, L.; Skerlos, S.J. Environmental life cycle assessment of treatment and management strategies for food waste and sewage sludge. Water Res. 2023, 240, 120078. [Google Scholar] [CrossRef]
- van den Oever, A.E.M.; Cardellini, G.; Sels, B.F.; Messagie, M. Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste. J. Clean. Prod. 2021, 306, 127156. [Google Scholar] [CrossRef]
- Ingwersen, W.W.; Stevenson, M.J. Can we compare the environmental performance of this product to that one? An update on the development of product category rules and future challenges toward alignment. J. Clean. Prod. 2012, 24, 102–108. [Google Scholar] [CrossRef]
- Subramanian, V.; Ingwersen, W.; Hensler, C.; Collie, H. Comparing product category rules from different programs: Learned outcomes towards global alignment. Int. J. Life Cycle Assess. 2012, 17, 892–903. [Google Scholar] [CrossRef]
- Wang, S.; Sahoo, K.; Jena, U.; Dong, H.; Bergman, R.; Runge, T. Life-cycle assessment of treating slaughterhouse waste using anaerobic digestion systems. J. Clean. Prod. 2021, 292, 126038. [Google Scholar] [CrossRef]
- Mancini, E.; Arzoumanidis, I.; Raggi, A. Evaluation of potential environmental impacts related to two organic waste treatment options in Italy. J. Clean. Prod. 2019, 214, 927–938. [Google Scholar] [CrossRef]
- Miller, S.A.; Theis, T.L. Comparison of life-cycle inventory databases: A case study using soybean production. J. Ind. Ecol. 2006, 10, 133–147. [Google Scholar] [CrossRef]
- González, R.; Rosas, J.G.; Blanco, D.; Smith, R.; Martínez, E.J.; Pastor-Bueis, R.; Gómez, X. Anaerobic digestion of fourth range fruit and vegetable products: Comparison of three different scenarios for its valorisation by life cycle assessment and life cycle costing. Environ. Monit. Assess. 2020, 192, 551. [Google Scholar] [CrossRef] [PubMed]
- Vinitskaia, N.; Zaikova, A.; Deviatkin, I.; Bachina, O.; Horttanainen, M. Life cycle assessment of the existing and proposed municipal solid waste management system in Moscow, Russia. J. Clean. Prod. 2021, 328, 129407. [Google Scholar] [CrossRef]
- Li, Y.; Qi, C.; Zhang, Y.; Li, Y.; Wang, Y.; Li, G.; Luo, W. Anaerobic digestion of agricultural wastes from liquid to solid state: Performance and environ-economic comparison. Bioresour. Technol. 2021, 332, 125080. [Google Scholar] [CrossRef]
- Wang, J.; Okopi, S.I.; Ma, H.; Wang, M.; Chen, R.; Tian, W.; Xu, F. Life cycle assessment of the integration of anaerobic digestion and pyrolysis for treatment of municipal solid waste. Bioresour. Technol. 2021, 338, 125486. [Google Scholar] [CrossRef]
- Zhen, H.; Yuan, K.; Qiao, Y.; Li, J.; Waqas, M.A.; Tian, G.; Dorca-Preda, T.; Knudsen, M.T. Eco-compensation quantification of sustainable food waste management alternatives based on economic and environmental life cycle cost-benefit assessment. J. Clean. Prod. 2023, 382, 135289. [Google Scholar] [CrossRef]
- Gupta, R.; Miller, R.; Sloan, W.; You, S. Economic and environmental assessment of organic waste to biomethane conversion. Bioresour. Technol. 2022, 345, 126500. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Zhao, X.; Yang, J.; Sun, H.; Yang, S.S.; Bai, S. Resource recovery in life cycle assessment of sludge treatment: Contribution, sensitivity, and uncertainty. Sci. Total Environ. 2022, 806, 150409. [Google Scholar] [CrossRef]
- Lin, H.; Borrion, A.; da Fonseca-Zang, W.A.; Zang, J.W.; Leandro, W.M.; Campos, L.C. Life cycle assessment of a biogas system for cassava processing in Brazil to close the loop in the water-waste-energy-food nexus. J. Clean. Prod. 2021, 299, 126861. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Greses, S.; Magdalena, J.A.; Iribarren, D.; Tomás-Pejó, E.; González-Fernández, C. Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes. Bioresour. Technol. 2021, 321, 124528. [Google Scholar] [CrossRef]
- Mendieta, O.; Castro, L.; Escalante, H.; Garfí, M. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresour. Technol. 2021, 326, 124783. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, J.; Tang, Y.T.; Higgitt, D.; Robinson, D. Life cycle assessment of municipal solid waste management in Nottingham, England: Past and future perspectives. J. Clean. Prod. 2020, 251, 119636. [Google Scholar] [CrossRef]
- Somorin, T.; Campos, L.C.; Kinobe, J.R.; Kulabako, R.N.; Afolabi, O.O.D. Sustainable valorisation of agri-food waste from open-air markets in Kampala, Uganda via standalone and integrated waste conversion technologies. Biomass Bioenergy 2023, 172, 106752. [Google Scholar] [CrossRef]
- Zhou, H.; Wei, L.; Wang, D.; Zhang, W. Environmental impacts and optimizing strategies of municipal sludge treatment and disposal routes in China based on life cycle analysis. Environ. Int. 2022, 166, 107378. [Google Scholar] [CrossRef]
- Sardarmehni, M.; Levis, J.W. Life-cycle modeling of nutrient and energy recovery through mixed waste processing systems. Resour. Conserv. Recycl. 2021, 169, 105503. [Google Scholar] [CrossRef]
- Panigrahi, S.; Tiwari, B.R.; Brar, S.K.; Kumar Dubey, B. Thermo-chemo-sonic pretreatment of lignocellulosic waste: Evaluating anaerobic biodegradability and environmental impacts. Bioresour. Technol. 2022, 361, 127675. [Google Scholar] [CrossRef]
- Valenti, F.; Liao, W.; Porto, S.M.C. Life cycle assessment of agro-industrial by-product reuse: A comparison between anaerobic digestion and conventional disposal treatments. Green Chem. 2020, 22, 7119–7139. [Google Scholar] [CrossRef]
- Nordahl, S.L.; Devkota, J.P.; Amirebrahimi, J.; Smith, S.J.; Breunig, H.M.; Preble, C.V.; Satchwell, A.J.; Jin, L.; Brown, N.J.; Kirchstetter, T.W.; et al. Life-Cycle Greenhouse Gas Emissions and Human Health Trade-Offs of Organic Waste Management Strategies. Environ. Sci. Technol. 2020, 54, 9200–9209. [Google Scholar] [CrossRef]
- Shih, M.F.; Lay, C.H.; Lin, C.Y.; Chang, S.H. Exploring the environmental and economic potential for biogas production from swine manure wastewater by life cycle assessment. Clean Technol. Environ. Policy 2023, 25, 451–464. [Google Scholar] [CrossRef]
- Chen, S.; Yu, L.; Zhang, C.; Wu, Y.; Li, T. Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm. J. Environ. Manag. 2023, 339, 117942. [Google Scholar] [CrossRef]
- Gadaleta, G.; Ferrara, C.; De Gisi, S.; Notarnicola, M.; De Feo, G. Life cycle assessment of end-of-life options for cellulose-based bioplastics when introduced into a municipal solid waste management system. Sci. Total Environ. 2023, 871, 161958. [Google Scholar] [CrossRef]
- Arfelli, F.; Maria Pizzone, D.; Cespi, D.; Ciacci, L.; Ciriminna, R.; Salvatore Calabrò, P.; Pagliaro, M.; Mauriello, F.; Passarini, F. Prospective life cycle assessment for the full valorization of anchovy fillet leftovers: The LimoFish process. Waste Manag. 2023, 168, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, A.; Appels, L.; Kočí, V. Life cycle assessment of municipal biowaste management—A Czech case study. J. Environ. Manag. 2023, 339, 117894. [Google Scholar] [CrossRef] [PubMed]
- Castellani, P.; Ferronato, N.; Ragazzi, M.; Torretta, V. Organic waste valorization in remote islands: Analysis of economic and environmental benefits of onsite treatment options. Waste Manag. Res. 2023, 41, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Orner, K.D.; Smith, S.; Nordahl, S.; Chakrabarti, A.; Breunig, H.; Scown, C.D.; Leverenz, H.; Nelson, K.L.; Horvath, A. Environmental and Economic Impacts of Managing Nutrients in Digestate Derived from Sewage Sludge and High-Strength Organic Waste. Environ. Sci. Technol. 2022, 56, 17256–17265. [Google Scholar] [CrossRef]
- Shinde, A.M.; Dikshit, A.K.; Odlare, M.; Thorin, E.; Schwede, S. Life cycle assessment of bio-methane and biogas-based electricity production from organic waste for utilization as a vehicle fuel. Clean Technol. Environ. Policy 2021, 23, 1715–1725. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S.A.; Himanshu, H.; Stobernack, N. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci. Total Environ. 2020, 721, 137731. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Azapagic, A. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation. Sci. Total Environ. 2019, 658, 684–696. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and environmental analysis of small-scale anaerobic digestion plants on Irish dairy farms. Energies 2020, 13, 637. [Google Scholar] [CrossRef]
No | Study | Context of AD | Type of Functional Unit (FU) | |||||
---|---|---|---|---|---|---|---|---|
Feedstock—Fixed Amount | Feedstock—Unitary | Feedstock—as a Function of Time | Energy—Unit Amount | Fuel—Unit Amount | FU—Not Defined | |||
1 | [37] | Slaughterhouse Waste | ✓ | |||||
2 | [38] | OFMSW | ✓ | |||||
3 | [31] | Sewer Sludge | ✓ | |||||
4 | [39] | OFMSW | ✓ | |||||
5 | [40] | OW (4th range vegetable and fruits) | ✓ | |||||
6 | [41] | MSW | ✓ | |||||
7 | [42] | Diary Manure and Cucumber Waste | ✓ | |||||
8 | [12] | OFMSW | ✓ | |||||
9 | [10] | FW, YW, and Biosolids | ✓ | |||||
10 | [43] | OFMSW | ✓ | |||||
11 | [6] | OFMSW | ✓ | |||||
12 | [44] | Cow Manure | ✓ | |||||
13 | [45] | FW | ✓ | |||||
14 | [46] | FW and Cow Slurry | ✓ | |||||
15 | [47] | Sewer Sludge | ✓ | |||||
16 | [48] | Cassava Starch Agro-Industrial | ✓ | |||||
17 | [29] | OFMSW | ✓ | |||||
18 | [49] | Sugar Cane | ✓ | |||||
19 | [38] | OFMSW and Graden Waste | ✓ | |||||
20 | [50] | MSW | ✓ | |||||
21 | [51] | Agri-Food Waste | ✓ | |||||
22 | [52] | Sewage Sludge | ✓ | |||||
23 | [53] | MSW | ✓ | |||||
24 | [54] | Yard Waste | ✓ | |||||
25 | [55] | Cattle and Poultry Manure, Whey and Silage, and Olive Pomace | ✓ | |||||
26 | [56] | OFMSW | ✓ | |||||
27 | [57] | Swine Manure | ✓ | |||||
28 | [58] | MSW | ✓ | |||||
29 | [59] | MSW | ✓ | |||||
30 | [60] | Fish Leftovers | ✓ | |||||
31 | [61] | OFMSW | ✓ | |||||
32 | [32] | OFMSW and Sewer Sludge | ✓ | |||||
33 | [33] | FW and Sewer Sludge | ✓ | |||||
34 | [23] | OFMSW and Sewer Sludge | ✓ | |||||
35 | [30] | Pig Manure and FW | ✓ | |||||
36 | [62] | OFMSW | ✓ | |||||
37 | [63] | Sewage Sludge HSOW | ✓ | |||||
38 | [11] | OFMSW, FW, and Wood Waste | ✓ | |||||
39 | [64] | SSOW, Grease Trap Sludge, and Ley Crops | ✓ | |||||
40 | [65] | OFMSW | ✓ | |||||
41 | [24] | Cattle Manure, Chicken Manure, Slaughterhouse Waste, and Cattle Slurry | ✓ | |||||
42 | [66] | Animal Slurry and Cereal Silage | ✓ | |||||
43 | [34] | Animal Manure and OFMSW | ✓ | |||||
44 | [25] | Diary Manure and FW | ✓ | |||||
45 | [26] | FW and Animal Manure | ✓ | |||||
46 | [22] | OFMSW | ✓ |
No | Study | LCIA Method | Used Database | ||||||
---|---|---|---|---|---|---|---|---|---|
ReCipe | CML | IPCC | IMPACT World+ | Environmental Footprint | USEPA, JRC, EPS | Not Mentioned | |||
1 | [12] | ✓ | Ecoinvent | ||||||
2 | [32] | ✓ | Ecoinvent | ||||||
3 | [34] | ✓ | Ecoinvent/Doka | ||||||
4 | [11] | ✓ | Ecoinvent | ||||||
5 | [65] | ✓ | Ecoinvent/Experiments | ||||||
6 | [46] | ✓ | Ecoinvent | ||||||
7 | [47] | ✓ | Ecoinvent/Case-Specific | ||||||
8 | [48] | ✓ | Not mentioned | ||||||
9 | [29] | ✓ | Ecoinvent | ||||||
10 | [49] | ✓ | Case-Specific | ||||||
11 | [38] | ✓ | Ecoinvent | ||||||
12 | [51] | ✓ | Aspen PLUS | ||||||
13 | [54] | ✓ | Ecoinvent | ||||||
14 | [66] | ✓ | Ecoinvent | ||||||
15 | [66] | ✓ | Ecoinvent | ||||||
16 | [55] | ✓ | Ecoinvent | ||||||
17 | [57] | ✓ | Ecoinvent | ||||||
18 | [59] | ✓ | Ecoinvent | ||||||
19 | [6] | ✓ | Ecoinvent | ||||||
20 | [64] | ✓ | Case-Specific | ||||||
21 | [45] | ✓ | GaBi/Past Literature | ||||||
22 | [42] | ✓ | GaBi | ||||||
23 | [23] | Ecoinvent | |||||||
24 | [30] | ✓ | Ecoinvent | ||||||
25 | [52] | ✓ | Ecoinvent | ||||||
26 | [62] | ✓ | WRATE | ||||||
27 | [40] | ✓ | Ecoinvent | ||||||
28 | [37] | ✓ | Past Literature/GaBi | ||||||
29 | [58] | ✓ | Past Literature/Field data | ||||||
30 | [37] | ✓ | NREL | ||||||
31 | [33] | ✓ | IPCC/GREET | ||||||
32 | [50] | ✓ | IPCC | ||||||
33 | [53] | ✓ | Ecoinvent | ||||||
34 | [31] | ✓ | Ecoinvent | ||||||
35 | [25] | ✓ | USLCI/GTREET | ||||||
36 | [22] | ✓ | EPA Data | ||||||
37 | [39] | ✓ | Ecoinvent | ||||||
38 | [60] | ✓ | Ecoinvent | ||||||
39 | [34] | ✓ | Ecoinvent | ||||||
40 | [61] | ✓ | GaBi | ||||||
41 | [44] | ✓ | IPCC | ||||||
42 | [26] | ✓ | Ecoinvent/GREET | ||||||
43 | [10] | ✓ | Doka | ||||||
44 | [43] | ✓ | Ecoinvent | ||||||
45 | [56] | ✓ | Ecoinvent | ||||||
46 | [63] | ✓ | Case-Specific |
Feedstock Material | Country | Comparing AD with | Preferred Alternative | Reference |
---|---|---|---|---|
FW, YW, Biosolids | USA | Landfilling with the use of LFG Landfilling without using LFG Composting | HS-AcD (High Solid Anaerobic Co-digestion) | [10] |
SS, FW | USA | Landfilling Composting Waste to energy | Novel two-phase AD | [33] |
CM, Feed waste, SS, Returned dairy products | Dubai | Landfilling | AD | [6] |
SS, WW, FW, Used oil | China | Landfilling Incineration Co-combustion Co-gasification | Co-gasification | [46] |
ACR, SCS | Columbia | Discharging to water after open burning | AD | [49] |
OFMSW | Iran | Composting | AD | [39] |
OFMSW | Italy | Landfilling | AD | [62] |
Municipal OW (Mainly FW) | USA | Composting Landfilling | Composting | [56] |
FW, YW | USA | Composting Landfilling | AD | [22] |
CM, Grass | Ireland | Landfilling | AD | [67] |
LCA Step | Subsection | Highlights |
---|---|---|
Goal and scope definition | Functional unit |
|
LCI analysis | System boundary |
|
Data sources |
| |
LCIA | LCIA methods |
|
LCA software |
| |
Life cycle results interpretation | Sensitivity analysis |
|
Uncertainty analysis |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayawickrama, K.; Ruparathna, R.; Seth, R.; Biswas, N.; Hafez, H.; Tam, E. Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste. Environments 2024, 11, 217. https://doi.org/10.3390/environments11100217
Jayawickrama K, Ruparathna R, Seth R, Biswas N, Hafez H, Tam E. Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste. Environments. 2024; 11(10):217. https://doi.org/10.3390/environments11100217
Chicago/Turabian StyleJayawickrama, Kasun, Rajeev Ruparathna, Rajesh Seth, Nihar Biswas, Hisham Hafez, and Edwin Tam. 2024. "Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste" Environments 11, no. 10: 217. https://doi.org/10.3390/environments11100217
APA StyleJayawickrama, K., Ruparathna, R., Seth, R., Biswas, N., Hafez, H., & Tam, E. (2024). Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste. Environments, 11(10), 217. https://doi.org/10.3390/environments11100217