Seeing Flames, Perceiving Quantity: Approximations of Fire Intensity Across Development
Abstract
1. Introduction
1.1. Developmental Trends in Non-Symbolic Quantity Perception
1.2. Representation of a Novel Non-Symbolic Quantity: Fire Intensity
1.3. Present Study
2. Materials and Methods
2.1. Open Practices Statement
2.2. Participants
2.3. Materials
2.4. Task Procedure
2.5. Experiment Design
3. Results
3.1. Response Accuracy
3.2. Weber Fraction (w) Estimates
3.3. Developmental Trend Analysis
4. Discussion
4.1. Evidence of Child Fire Perception and Age-Related Differences
4.2. Developmental Trend Comparisons of Fire and Prior Estimates of Non-Symbolic Quantity Precision
4.3. Limitations and Future Directions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SES | Socioeconomic status |
HRR | Heat release rate |
OR | Odds ratio |
w | Weber fraction |
1 | One parent reported that they mistakenly completed the child task; their data was included for analysis with the adult age group but omitted from Figure 2. |
References
- Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, white women. Health Psychology, 19(6), 586–592. [Google Scholar] [CrossRef] [PubMed]
- Anobile, G., Cicchini, G. M., & Burr, D. C. (2016). Number as a primary perceptual attribute: A review. Perception, 45(1–2), 5–31. [Google Scholar] [CrossRef]
- Aulet, L. S., & Lourenco, S. F. (2021). The relative salience of numerical and non-numerical dimensions shifts over development: A re-analysis of Tomlinson, DeWind, and Brannon (2020). Cognition, 210, 104610. [Google Scholar] [CrossRef]
- Ballal, D. R., & Lefebvre, A. H. (1975). The structure and propagation of turbulent flames. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 344(1637), 217–234. [Google Scholar]
- Bates, D. M., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. [Google Scholar] [CrossRef]
- Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. [Google Scholar] [CrossRef]
- Bonny, J. W., & Lourenco, S. F. (2015). Individual differences in children’s approximations of area correlate with competence in basic geometry. Learning and Individual Differences, 44, 16–24. [Google Scholar] [CrossRef]
- Bonny, J. W., & Milke, J. A. (2023). Precision of visual perception of developing fires. Fire, 6(9), 328. [Google Scholar] [CrossRef]
- Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83(3), 223–240. [Google Scholar] [CrossRef]
- Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), F59–F64. [Google Scholar] [CrossRef] [PubMed]
- Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1525), 1831–1840. [Google Scholar] [CrossRef]
- Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425–428. [Google Scholar] [CrossRef]
- Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13(2), 83–91. [Google Scholar] [CrossRef] [PubMed]
- Dakin, S. C., Tibber, M. S., Greenwood, J. A., Kingdom, F. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19552–19557. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S., & Brannon, E. M. (2010). Space, time, and number: A Kantian research program. Trends in Cognitive Sciences, 14(12), 517–519. [Google Scholar] [CrossRef]
- de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. [Google Scholar] [CrossRef]
- DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition, 142, 247–265. [Google Scholar] [CrossRef]
- DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132(1), 73–97. [Google Scholar] [CrossRef] [PubMed]
- Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. [Google Scholar] [CrossRef]
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression. Sage. [Google Scholar]
- Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. [Google Scholar] [CrossRef]
- Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8(6), e67374. [Google Scholar] [CrossRef]
- Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496–499. [Google Scholar] [CrossRef]
- Green, P., & Macleod, C. J. (2015). simr: An R package for power analysis of generalised linear mixed models by simulation. Methods in Ecology and Evolution, 1–20. [Google Scholar] [CrossRef]
- Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. [Google Scholar] [CrossRef]
- Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–11120. [Google Scholar] [CrossRef] [PubMed]
- Halberda, J., & Odic, D. (2015). Chapter 12—The precision and internal confidence of our approximate number thoughts. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Mathematical cognition and learning (Vol. 1, pp. 305–333). Elsevier. [Google Scholar] [CrossRef]
- Hall, S. (2023). Home structure fires (No. USS12; NFPA Research). National Fire Protection Association. Available online: https://www.nfpa.org/education-and-research/research/nfpa-research/fire-statistical-reports/home-structure-fires (accessed on 1 April 2023).
- Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–10385. [Google Scholar] [CrossRef] [PubMed]
- Kramer, P., Bono, M. G. D., & Zorzi, M. (2011). Numerosity estimation in visual stimuli in the absence of luminance-based cues. PLoS ONE, 6(2), e17378. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, E. D. (2013). Predicting human behavior during fires. Fire Technology, 49, 101–120. [Google Scholar] [CrossRef]
- Kuligowski, E. D., & Mileti, D. S. (2009). Modeling pre-evacuation delay by occupants in World Trade Center Towers 1 and 2 on September 11, 2001. Fire Safety Journal, 44(4), 487–496. [Google Scholar] [CrossRef]
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–19. [Google Scholar] [CrossRef]
- Lange, K., Kühn, S., & Filevich, E. (2015). “Just Another Tool for Online Studies” (JATOS): An easy solution for setup and management of web servers supporting online studies. PLoS ONE, 10(6), e0130834. [Google Scholar] [CrossRef]
- Lenth, R. V., Buerkner, P., Herve, M., Love, J., Miguez, F., Riebl, H., & Singmann, H. (2022). Emmeans: Estimated marginal means, aka least-squares means (Version 1.7.3) [Computer software]. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 April 2023).
- Libertus, M. E., Brannon, E. M., & Woldorff, M. G. (2011). Parallels in stimulus-driven oscillatory brain responses to numerosity changes in adults and seven-month-old infants. Developmental Neuropsychology, 36(6), 651–667. [Google Scholar] [CrossRef] [PubMed]
- Lindskog, M., Winman, A., & Juslin, P. (2013). Are there rapid feedback effects on Approximate Number System acuity? Frontiers in Human Neuroscience, 7, 270. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science, 20(4), e12418. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18737–18742. [Google Scholar] [CrossRef]
- Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873–881. [Google Scholar] [CrossRef]
- McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2021). Fire dynamics simulator user’s guide. No. SP 1019. National Institute of Standards and Technology. p. 386.
- Nieder, A. (2020). The adaptive value of numerical competence. Trends in Ecology & Evolution, 35(7), 605–617. [Google Scholar] [CrossRef]
- Odic, D. (2018). Children’s intuitive sense of number develops independently of their perception of area, density, length, and time. Developmental Science, 21(2), e12533. [Google Scholar] [CrossRef]
- Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 44(5), 1457–1465. [Google Scholar] [CrossRef]
- Odic, D., & Oppenheimer, D. M. (2023). Visual numerosity perception shows no advantage in real-world scenes compared to artificial displays. Cognition, 230, 105291. [Google Scholar] [CrossRef]
- Piantadosi, S. T. (2016). Efficient estimation of Weber’s W. Behavior Research Methods, 48(1), 42–52. [Google Scholar] [CrossRef]
- Pooja, R., Ghosh, P., & Sreekumar, V. (2024). Towards an ecologically valid naturalistic cognitive neuroscience of memory and event cognition. Neuropsychologia, 203, 108970. [Google Scholar] [CrossRef] [PubMed]
- Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2(4), 409–428. [Google Scholar] [CrossRef]
- Quintiere, J. G. (2006). Fundamentals of fire phenomena. Wiley. [Google Scholar]
- Sanford, E. M., & Halberda, J. (2024). Non-numerical features fail to predict numerical performance in real-world stimuli. Cognitive Development, 69, 101415. [Google Scholar] [CrossRef]
- Schmuckler, M. A. (2001). What is ecological validity? A dimensional analysis. Infancy, 2(4), 419–436. [Google Scholar] [CrossRef] [PubMed]
- Shields, M. M., McGinnis, M. N., & Selmeczy, D. (2021). Remote research methods: Considerations for work with children. Frontiers in Psychology, 12, 703706. [Google Scholar] [CrossRef] [PubMed]
- Stamps, A. E., III. (2002). Entropy, visual diversity, and preference. The Journal of General Psychology, 129(3), 300–320. [Google Scholar] [CrossRef]
- Starr, A., & Brannon, E. M. (2015). Chapter 5—Evolutionary and developmental continuities in numerical cognition. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Mathematical cognition and learning (Vol. 1, pp. 123–144). Elsevier. [Google Scholar] [CrossRef]
- Starr, A., DeWind, N. K., & Brannon, E. M. (2017). The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement. Cognition, 168, 222–233. [Google Scholar] [CrossRef]
- Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54(6), 377–411. [Google Scholar] [CrossRef]
- vanMarle, K., & Wynn, K. (2011). Tracking and quantifying objects and non-cohesive substances. Developmental Science, 14(3), 502–515. [Google Scholar] [CrossRef] [PubMed]
- Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. [Google Scholar]
- Wrangham, R., & Carmody, R. (2010). Human adaptation to the control of fire. Evolutionary Anthropology: Issues, News, and Reviews, 19(5), 187–199. [Google Scholar] [CrossRef]
- Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88–101. [Google Scholar] [CrossRef]
- Yan, L., Qian, P., & Yan, R. (2024). Developmental changes in numerosity and area perception in school-age children. Acta Psychologica, 249, 104466. [Google Scholar] [CrossRef] [PubMed]
Demographic | 3-Year-Olds | 4-Year-Olds | 5-Year-Olds | 6-Year-Olds | Adults |
---|---|---|---|---|---|
N | 24 | 23 | 19 | 14 | 100 |
N female | 11 | 9 | 11 | 9 | 75 |
Age Mean | 3.52 | 4.41 | 5.37 | 6.17 | 36.28 |
Age Min | 3.00 | 4.00 | 5.00 | 6.00 | 22.00 |
Age Max | 3.92 | 4.92 | 5.83 | 6.67 | 50.00 |
SES a Mean | 4.79 | 5.43 | 4.68 | 5.92 | 5.07 |
SES a Min | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 |
SES a Max | 7.00 | 8.00 | 7.00 | 9.00 | 9.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonny, J.W. Seeing Flames, Perceiving Quantity: Approximations of Fire Intensity Across Development. Behav. Sci. 2025, 15, 1397. https://doi.org/10.3390/bs15101397
Bonny JW. Seeing Flames, Perceiving Quantity: Approximations of Fire Intensity Across Development. Behavioral Sciences. 2025; 15(10):1397. https://doi.org/10.3390/bs15101397
Chicago/Turabian StyleBonny, Justin W. 2025. "Seeing Flames, Perceiving Quantity: Approximations of Fire Intensity Across Development" Behavioral Sciences 15, no. 10: 1397. https://doi.org/10.3390/bs15101397
APA StyleBonny, J. W. (2025). Seeing Flames, Perceiving Quantity: Approximations of Fire Intensity Across Development. Behavioral Sciences, 15(10), 1397. https://doi.org/10.3390/bs15101397