Using Learner Reviews to Inform Instructional Video Design in MOOCs
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data Preparation
3.2. Data Analysis
4. Results
4.1. What Key Characteristics of MOOC Videos Are Associated with Learners’ Favorable Perceptions of MOOC Videos?
4.2. What Resources Do Learners Perceive as Helpful to Support Their Use of MOOC Videos?
4.3. What Production Features Do Learners Value in MOOC Videos?
5. Discussion
6. Research Implications
7. Limitations and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, B. Research on the factors influencing the learner satisfaction of MOOCs. Educ. Inf. Technol. 2023, 28, 1935–1955. [Google Scholar] [CrossRef]
- Deng, R.; Benckendorff, P. What are the key themes associated with the positive learning experience in MOOCs? An empirical investigation of learners’ ratings and reviews. Int. J. Educ. Technol. High. Educ. 2021, 18, 9. [Google Scholar] [CrossRef]
- Lowenthal, P.R. Exploring student perceptions of asynchronous video in online courses. Distance Educ. 2022, 43, 369–387. [Google Scholar] [CrossRef]
- Watson, W.R.; Kim, W.; Watson, S.L. Learning outcomes of a MOOC designed for attitudinal change: A case study of an Animal Behavior and Welfare MOOC. Comput. Educ. 2016, 96, 83–93. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, G.; Gao, W.; Wang, M. Big data analytics for MOOC video watching behavior based on Spark. Neural Comput. Appl. 2020, 32, 6481–6489. [Google Scholar] [CrossRef]
- Stöhr, C.; Stathakarou, N.; Mueller, F.; Nifakos, S.; McGrath, C. Videos as learning objects in MOOCs: A study of specialist and non-specialist participants’ video activity in MOOCs. Br. J. Educ. Technol. 2019, 50, 166–176. [Google Scholar] [CrossRef]
- Lemay, D.J.; Doleck, T. Predicting completion of massive open online course (MOOC) assignments from video viewing behavior. Interact. Learn. Environ. 2022, 30, 1782–1793. [Google Scholar] [CrossRef]
- Mamgain, N.; Sharma, A.; Goyal, P. Learner’s perspective on video-viewing features offered by MOOC providers: Coursera and edX. In Proceedings of the IEEE International Conference on MOOC, Innovation and Technology in Education, Patiala, India, 19–20 December 2014. [Google Scholar]
- Uchidiuno, J.; Koedinger, K.; Hammer, J.; Yarzebinski, E.; Ogan, A. How do English language learners interact with different content types in MOOC videos? Int. J. Artif. Intell. Educ. 2017, 28, 508–527. [Google Scholar] [CrossRef]
- Mubarak, A.A.; Cao, H.; Zhang, W.; Zhang, W. Visual analytics of video-clickstream data and prediction of learners’ performance using deep learning models in MOOCs’ courses. Comput. Appl. Eng. Educ. 2020, 29, 710–732. [Google Scholar] [CrossRef]
- Guo, P.J.; Kim, J.; Rubin, R. How video production affects student engagement: An empirical study of MOOC videos. In Proceedings of the First ACM Conference on Learning at Scale, Atlanta, GA, USA, 4–5 March 2014. [Google Scholar]
- Deng, R.; Benckendorff, P.; Gannaway, D. Learner engagement in MOOCs: Scale development and validation. Br. J. Educ. Technol. 2020, 51, 245–262. [Google Scholar] [CrossRef]
- Deng, R.; Benckendorff, P. A contemporary review of research methods adopted to understand students’ and instructors’ use of Massive Open Online Courses (MOOCs). Int. J. Inf. Educ. Technol. 2017, 7, 601–607. [Google Scholar] [CrossRef]
- Nishchyk, A.; Sanderson, N.C.; Chen, W. How elderly people experience videos in MOOCs. In Proceedings of the 19th International Conference on Engineering and Product Design Education, Oslo, Norway, 7–8 September 2017. [Google Scholar]
- Barthakur, A.; Kovanovic, V.; Joksimovic, S.; Siemens, G.; Richey, M.; Dawson, S. Assessing program-level learning strategies in MOOCs. Comput. Hum. Behav. 2021, 117, 106674. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, M.; Zhang, J. The learning behaviours of dropouts in MOOCs: A collective attention network perspective. Comput. Educ. 2021, 167, 104189. [Google Scholar] [CrossRef]
- Dang, A.; Khanra, S.; Kagzi, M. Barriers towards the continued usage of massive open online courses: A case study in India. Int. J. Manag. Educ. 2022, 20, 100562. [Google Scholar] [CrossRef]
- Fiorella, L.; Mayer, R.E. What works and doesn’t work with instructional video. Comput. Hum. Behav. 2018, 89, 465–470. [Google Scholar] [CrossRef]
- Davis, R.O. The impact of pedagogical agent gesturing in multimedia learning environments: A meta-analysis. Educ. Res. Rev. 2018, 24, 193–209. [Google Scholar] [CrossRef]
- Castro-Alonso, J.C.; Wong, R.M.; Adesope, O.O.; Paas, F. Effectiveness of multimedia pedagogical agents predicted by diverse theories: A meta-analysis. Educ. Psychol. Rev. 2021, 33, 989–1015. [Google Scholar] [CrossRef]
- Merkt, M.; Lux, S.; Hoogerheide, V.; van Gog, T.; Schwan, S. A change of scenery: Does the setting of an instructional video affect learning? J. Educ. Psychol. 2020, 112, 1273–1283. [Google Scholar] [CrossRef]
- Alemdag, E. Effects of instructor-present videos on learning, cognitive load, motivation, and social presence: A meta-analysis. Educ. Inf. Technol. 2022, 27, 12713–12742. [Google Scholar] [CrossRef]
- Sondermann, C.; Merkt, M. Like it or learn from it: Effects of talking heads in educational videos. Comput. Educ. 2023, 193, 104675. [Google Scholar] [CrossRef]
- Deng, R.; Gao, Y. Effects of embedded questions in pre-class videos on learner perceptions, video engagement, and learning performance in flipped classrooms. Act. Learn. High. Educ. 2023. Advance online publication. [Google Scholar]
- Sigmon, A.J.; Bodek, M.J. Use of an online social annotation platform to enhance a flipped organic chemistry course. J. Chem. Educ. 2022, 99, 538–545. [Google Scholar] [CrossRef]
- Deng, R.; Gao, Y. A review of eye tracking research on video-based learning. Educ. Inf. Technol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Johnson, J.; Aarhus, W.; Shah, D. Key factors in MOOC pedagogy based on NLP sentiment analysis of learner reviews: What makes a hit. Comput. Educ. 2022, 176, 104354. [Google Scholar] [CrossRef]
- Cho, M.-H.; Yang, T.; Niu, Z.; Kim, J.K. Investigating what learners value in marketing MOOCs: A content analysis. J. Comput. High. Educ. 2022. [Google Scholar] [CrossRef]
- Gomez, M.J.; Calderón, M.; Sánchez, V.; Clemente, F.J.G.; Ruipérez-Valiente, J.A. Large scale analysis of open MOOC reviews to support learners’ course selection. Expert Syst. Appl. 2022, 210, 118400. [Google Scholar] [CrossRef]
- Wang, X.; Lee, Y.; Lin, L.; Mi, Y.; Yang, T. Analyzing instructional design quality and students’ reviews of 18 courses out of the Class Central Top 20 MOOCs through systematic and sentiment analyses. Internet High. Educ. 2021, 50, 100810. [Google Scholar] [CrossRef]
- Nilashi, M.; Abumalloh, R.A.; Zibarzani, M.; Samad, S.; Zogaan, W.A.; Ismail, M.Y.; Mohd, S.; Akib, N.A.M. What factors influence students satisfaction in massive open online courses? Findings from user-generated content using educational data mining. Educ. Inf. Technol. 2022, 27, 9401–9435. [Google Scholar] [CrossRef]
- Hew, K.F.; Qiao, C.; Tang, Y. Understanding student engagement in large-scale open online courses: A machine learning facilitated analysis of student’s reflections in 18 highly rated MOOCs. Int. Rev. Res. Open Distrib. Learn. 2018, 19, 68–93. [Google Scholar] [CrossRef]
- Chen, X.; Zou, D.; Xie, H.; Cheng, G. What are MOOCs learners’ concerns? Text analysis of reviews for computer science courses. In Database systems for advanced applications; Nah, Y., Kim, C., Kim, S.-Y., Moon, Y.-S., Whang, S.E., Eds.; Springer: Cham, Germany, 2020; pp. 73–79. [Google Scholar]
- Shah, D.; Pickard, L.; Ma, R. Massive List of MOOC Platforms around the World in 2023. Available online: https://www.classcentral.com/report/mooc-platforms/ (accessed on 8 March 2023).
- Kozinets, R.V. Netnography: Doing Ethnographic Research Online; SAGE Publications Ltd.: London, UK, 2010. [Google Scholar]
- Almossa, S.Y. University students’ perspectives toward learning and assessment during COVID-19. Educ. Inf. Technol. 2021, 26, 7163–7181. [Google Scholar] [CrossRef]
- Wohlfart, O.; Trumler, T.; Wagner, I. The unique effects of COVID-19—A qualitative study of the factors that influence teachers’ acceptance and usage of digital tools. Educ. Inf. Technol. 2021, 26, 7359–7379. [Google Scholar] [CrossRef]
- Corsini, L.; Aranda-Jan, C.B.; Moultrie, J. Using digital fabrication tools to provide humanitarian and development aid in low-resource settings. Technol. Soc. 2019, 58, 101117. [Google Scholar] [CrossRef]
- Li, L.-Y.; Huang, W.-L.; Tsai, C.-C. Development and evaluation of a video playing interface with headings and table of contents. Interact. Learn. Environ. 2020, 28, 948–963. [Google Scholar] [CrossRef]
- Pi, Z.; Zhang, Y.; Xu, K.; Yang, J. Does an outline of contents promote learning from videos? A study on learning performance and engagement. Educ. Inf. Technol. 2023, 28, 3493–3511. [Google Scholar] [CrossRef]
- Hew, K.F. Promoting engagement in online courses: What strategies can we learn from three highly rated MOOCS. Br. J. Educ. Technol. 2015, 47, 320–341. [Google Scholar] [CrossRef]
- Peng, J.-E.; Jiang, Y. Mining opinions on LMOOCs: Sentiment and content analyses of Chinese students’ comments in discussion forums. System 2022, 109, 102879. [Google Scholar] [CrossRef]
- Henderikx, M.; Kreijns, K.; Xu, K.M. Investigating the associations between emotion, cognitive load and personal learning goals: The case for MOOCs. In Technology-Enhanced Learning for a Free, Safe, and Sustainable World; De Laet, T., Klemke, R., Alario-Hoyos, C., Hilliger, I., Ortega-Arranz, A., Eds.; Springer: Cham, Germany, 2021; pp. 305–309. [Google Scholar]
- Deng, R. Emotionally engaged learners are more satisfied with online courses. Sustainability 2021, 13, 11169. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, T. Emotions, engagement, and self-perceived achievement in a small private online course. J. Comput. Assist. Learn. 2019, 36, 449–457. [Google Scholar] [CrossRef]
- Gong, L.; Liu, Y.; Zhao, W. Dynamics of emotional states and their relationship with learning outcomes during learning Python with MOOC. In Proceedings of the 2019 7th International Conference on Information and Education Technology, Aizu-Wakamatsu, Japan, 29–31 March 2019. [Google Scholar]
- Wong, R.M.; Adesope, O.O. Meta-analysis of emotional designs in multimedia learning: A replication and extension study. Educ. Psychol. Rev. 2021, 33, 357–385. [Google Scholar] [CrossRef]
- Lawson, A.P.; Mayer, R.E. The power of voice to convey emotion in multimedia instructional messages. Int. J. Artif. Intell. Educ. 2021, 32, 971–990. [Google Scholar] [CrossRef]
- Endres, T.; Weyreter, S.; Renkl, A.; Eitel, A. When and why does emotional design foster learning? Evidence for situational interest as a mediator of increased persistence. J. Comput. Assist. Learn. 2020, 36, 514–525. [Google Scholar] [CrossRef]
- Chiu, T.K.F.; Jong, M.S.-Y.; Mok, I.A.C. Does learner expertise matter when designing emotional multimedia for learners of primary school mathematics? Educ. Technol. Res. Dev. 2020, 68, 2305–2320. [Google Scholar] [CrossRef]
- Lawson, A.P.; Mayer, R.E.; Adamo-Villani, N.; Benes, B.; Lei, X.; Cheng, J. The positivity principle: Do positive instructors improve learning from video lectures? Educ. Technol. Res. Dev. 2021, 69, 3101–3129. [Google Scholar] [CrossRef] [PubMed]
- Pi, Z.; Liu, W.; Ling, H.; Zhang, X.; Li, X. Does an instructor’s facial expressions override their body gestures in video lectures? Comput. Educ. 2023, 193, 104679. [Google Scholar] [CrossRef]
- Deng, R.; Benckendorff, P.; Gannaway, D. Progress and new directions for teaching and learning in MOOCs. Comput. Educ. 2019, 129, 48–60. [Google Scholar] [CrossRef]
- Moore, R.L.; Wang, C. Influence of learner motivational dispositions on MOOC completion. J. Comput. High. Educ. 2020, 33, 121–134. [Google Scholar] [CrossRef]
- Rivas, M.J.; Baker, R.B.; Evans, B.J. Do MOOCs make you more marketable? An experimental analysis of the value of MOOCs relative to traditional credentials and experience. AERA Open 2020, 6, 233285842097357. [Google Scholar] [CrossRef]
- Van Harsel, M.; Hoogerheide, V.; Janssen, E.; Verkoeijen, P.; van Gog, T. How do higher education students regulate their learning with video modeling examples, worked examples, and practice problems? Instr. Sci. 2022, 50, 703–728. [Google Scholar] [CrossRef]
- Boucheix, J.-M.; Gauthier, P.; Fontaine, J.-B.; Jaffeux, S. Mixed camera viewpoints improve learning medical hand procedure from video in nurse training? Comput. Hum. Behav. 2018, 89, 418–429. [Google Scholar] [CrossRef]
- Koning, B.B.; Mok, K.; Marcus, N.; Ayres, P. Investigating the role of hand perspective in learning from procedural animations. Br. J. Educ. Psychol. 2022. [Google Scholar] [CrossRef]
- Wei, X.; Taecharungroj, V. How to improve learning experience in MOOCs an analysis of online reviews of business courses on Coursera. Int. J. Manag. Educ. 2022, 20, 100675. [Google Scholar] [CrossRef]
- Borrella, I.; Caballero-Caballero, S.; Ponce-Cueto, E. Taking action to reduce dropout in MOOCs: Tested interventions. Comput. Educ. 2022, 179, 104412. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Xu, Z.; Wang, M. The usability research of learning resource design for MOOCs. In Proceedings of the IEEE International Conference on Teaching, Assessment and Learning for Engineering, Wellington, New Zealand, 8–10 December 2014. [Google Scholar]
- Vural, O.F. The impact of a question-embedded video-based learning tool on e-learning. Educ. Sci. Theory Pract. 2013, 13, 1315–1323. [Google Scholar]
- Haagsman, M.E.; Scager, K.; Boonstra, J.; Koster, M.C. Pop-up questions within educational videos: Effects on students’ learning. J. Sci. Educ. Technol. 2020, 29, 713–724. [Google Scholar] [CrossRef]
- van der Meij, H.; Böckmann, L. Effects of embedded questions in recorded lectures. J. Comput. High. Educ. 2020, 33, 235–254. [Google Scholar] [CrossRef]
- Topali, P.; Ortega-Arranz, A.; Er, E.; Martínez-Monés, A.; Villagrá-Sobrino, S.L.; Dimitriadis, Y. Exploring the problems experienced by learners in a MOOC implementing active learning pedagogies. In Digital Education: At the MOOC Crossroads Where the Interests of Academia and Business Converge; Calise, M., Delgado Kloos, C., Reich, J., Ruiperez-Valiente, J.A., Wirsing, M., Eds.; Springer: Cham, Germany, 2019; pp. 81–90. [Google Scholar]
- Sepp, S.; Wong, M.; Hoogerheide, V.; Castro-Alonso, J.C. Shifting online: 12 tips for online teaching derived from contemporary educational psychology research. J. Comput. Assist. Learn. 2022, 38, 1304–1320. [Google Scholar] [CrossRef]
- Zhu, J.; Yuan, H.; Zhang, Q.; Huang, P.H.; Wang, Y.; Duan, S.; Lei, M.; Lim, E.G.; Song, P. The impact of short videos on student performance in an online-flipped college engineering course. Humanit. Soc. Sci. Commun. 2022, 9, 327. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, M. Effects of video length on a flipped English classroom. SAGE Open 2022, 12. [Google Scholar] [CrossRef]
- Slemmons, K.; Anyanwu, K.; Hames, J.; Grabski, D.; Mlsna, J.; Simkins, E.; Cook, P. The impact of video length on learning in a middle-level flipped science setting: Implications for diversity inclusion. J. Sci. Educ. Technol. 2018, 27, 469–479. [Google Scholar] [CrossRef]
- Pi, Z.; Hong, J. Learning process and learning outcomes of video podcasts including the instructor and PPT slides: A Chinese case. Innov. Educ. Teach. Int. 2016, 53, 135–144. [Google Scholar] [CrossRef]
- Dart, S. Khan-style video engagement in undergraduate engineering: Influence of video duration, content type and course. In Proceedings of the 31st Annual Conference of the Australasian Association for Engineering Education, Sydney, Australia, 6–9 December 2020. [Google Scholar]
- Robal, T.; Zhao, Y.; Lofi, C.; Hauff, C. IntelliEye: Enhancing MOOC learners’ video watching experience through real-time attention tracking. In Proceedings of the 29th on Hypertext and Social Media, Association for Computing Machinery, Baltimore, MD, USA, 9–12 July 2018. [Google Scholar]
- Liu, C.; Zou, D.; Chen, X.; Xie, H.; Chan, W.H. A bibliometric review on latent topics and trends of the empirical MOOC literature (2008–2019). Asia Pac. Educ. Rev. 2021, 22, 515–534. [Google Scholar] [CrossRef]
- Goeman, K.; De Grez, L.; Deschacht, N. Fostering learning from instructional video: Effect of subtitle language on content recall. J. Educ. Multimed. Hypermedia 2021, 30, 233–255. [Google Scholar]
- Teng, F. The effects of video caption types and advance organizers on incidental L2 collocation learning. Comput. Educ. 2019, 142, 103655. [Google Scholar] [CrossRef]
- Tarchi, C.; Zaccoletti, S.; Mason, L. Learning from text, video, or subtitles: A comparative analysis. Comput. Educ. 2021, 160, 104034. [Google Scholar] [CrossRef]
- Zheng, H.; Branch, R.M.; Ding, L.; Kim, D.; Jung, E.; Lu, Z.; Li, T.; Pan, Z.; Yoon, M. The combination of segmentation and self-explanation to enhance video-based learning. Act. Learn. High. Educ. 2022. [Google Scholar] [CrossRef]
- Mac Lochlainn, C.; Nic Giolla Mhichíl, M.; Beirne, E.; Brown, M. The soul behind the screen: Understanding cultural enrichment as a motivation of informal MOOC learning. Distance Educ. 2020, 41, 201–215. [Google Scholar] [CrossRef]
- Iniesto, F.; McAndrew, P.; Minocha, S.; Coughlan, T. A qualitative study to understand the perspectives of MOOC providers on accessibility. Australas. J. Educ. Technol. 2021, 38, 87–101. [Google Scholar] [CrossRef]
- Santos Espino, J.M.; Afonso Suárez, M.D.; Guerra Artal, C. Speakers and boards: A survey of instructional video styles in MOOCs. Tech. Commun. 2016, 63, 101–115. [Google Scholar]
- Fyfield, M.; Henderson, M.; Phillips, M. Improving instructional video design: A systematic review. Australas. J. Educ. Technol. 2022, 38, 155–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, R.; Gao, Y. Using Learner Reviews to Inform Instructional Video Design in MOOCs. Behav. Sci. 2023, 13, 330. https://doi.org/10.3390/bs13040330
Deng R, Gao Y. Using Learner Reviews to Inform Instructional Video Design in MOOCs. Behavioral Sciences. 2023; 13(4):330. https://doi.org/10.3390/bs13040330
Chicago/Turabian StyleDeng, Ruiqi, and Yifan Gao. 2023. "Using Learner Reviews to Inform Instructional Video Design in MOOCs" Behavioral Sciences 13, no. 4: 330. https://doi.org/10.3390/bs13040330
APA StyleDeng, R., & Gao, Y. (2023). Using Learner Reviews to Inform Instructional Video Design in MOOCs. Behavioral Sciences, 13(4), 330. https://doi.org/10.3390/bs13040330